1,295 results match your criteria: "Clinical Research Institute of Montreal[Affiliation]"

Ease of use and acceptability of nasal versus injectable glucagon (IG) among pediatric responders have been little investigated. This study compared the performance of administering nasal and IG in parents of youth with type 1 diabetes (T1D) and in school workers. Enablers and barriers associated with each glucagon and preferred glucagon administration learning modality were also evaluated.

View Article and Find Full Text PDF

NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases.

Am J Pathol

June 2023

Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada. Electronic address:

HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN.

View Article and Find Full Text PDF

Background: PCSK9 modulates the uptake of circulating lipids through a range of receptors, including the low-density lipoprotein receptor (LDLR) and CD36. In the kidney, CD36 is known to contribute to renal injury through pro-inflammatory and -fibrotic pathways. In this study, we sought to investigate the role of PCSK9 in modulating renal lipid accumulation and injury through CD36 using a high fat diet (HFD)-induced murine model.

View Article and Find Full Text PDF

The regulatory mechanism of gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3'-untranslated region (3'-UTR) of human mRNA.

View Article and Find Full Text PDF

Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR).

View Article and Find Full Text PDF

Previously we demonstrated that Ahnak mediates transforming growth factor-β (TGFβ)-induced epithelial-mesenchymal transition (EMT) during tumor metastasis. It is well-known that circulating tumor cells (CTCs) invade the vasculature of adjacent target tissues before working to adapt to the host environments. Currently, the molecular mechanism by which infiltrated tumor cells interact with host cells to survive within target tissue environments is far from clear.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14 CD16) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14 CD16 cells are CD11b Gr1 myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing in dendritic cells (DC), pDC, CD4 T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC.

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in β-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and β-cell function.

View Article and Find Full Text PDF

Individuals harboring the loss-of-function (LOF) proprotein convertase subtilisin/kexin type 9 Gln152His variation (PCSK9Q152H) have low circulating low-density lipoprotein cholesterol levels and are therefore protected against cardiovascular disease (CVD). This uncleavable form of proPCSK9, however, is retained in the endoplasmic reticulum (ER) of liver hepatocytes, where it would be expected to contribute to ER storage disease (ERSD), a heritable condition known to cause systemic ER stress and liver injury. Here, we examined liver function in members of several French-Canadian families known to carry the PCSK9Q152H variation.

View Article and Find Full Text PDF

Recent evidence suggests that proprotein convertase subtilisin/kexin type 9 (PCSK9), a downmodulator of cellular uptake of blood cholesterol, also negatively impacts host immune response to microbial infection. In this study, we investigated whether carrying the loss-of-function (LOF) rs562556 (c.1420 A > G; p.

View Article and Find Full Text PDF

Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain.

Eur J Pharm Biopharm

September 2020

Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Northern Ontario School of Medicine, Medicinal Sciences Division, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada. Electronic address:

Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system.

View Article and Find Full Text PDF

Examination of genetic polymorphisms in outbred wild-living species provides insights into the evolution of complex systems. In higher vertebrates, the proopiomelanocortin (POMC) precursor gives rise to α-, β-, and γ-melanocyte-stimulating hormones (MSH), which are involved in numerous physiological aspects. Genetic defects in POMC are linked to metabolic disorders in humans and animals.

View Article and Find Full Text PDF

knockout exacerbates diet-induced non-alcoholic steatohepatitis, fibrosis and liver injury in mice.

JHEP Rep

December 2019

Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton, Ontario L8N 4A6, Canada.

Unlabelled: The fatty acid translocase, also known as CD36, is a well-established scavenger receptor for fatty acid (FA) uptake and is abundantly expressed in many metabolically active tissues. In the liver, CD36 is known to contribute to the progression of non-alcoholic fatty liver disease and to the more severe non-alcoholic steatohepatitis, by promoting triglyceride accumulation and subsequent lipid-induced endoplasmic reticulum (ER) stress. Given the recent discovery that the hepatocyte-secreted proprotein convertase subtilisin/kexin type 9 (PCSK9) blocks CD36 expression, we sought to investigate the role of PCSK9 in liver fat accumulation and injury in response to saturated FAs and in a mouse model of diet-induced hepatic steatosis.

View Article and Find Full Text PDF

Introduction: Excessive prescribing after surgery has contributed to a public health crisis of opioid addiction and overdose in North America. However, the value of prescribing opioids to manage postoperative pain after surgical discharge remains unclear. We propose a systematic review and meta-analysis to assess the extent to which opioid analgesia impact postoperative pain intensity and adverse events in comparison to opioid-free analgesia in patients discharged after surgery.

View Article and Find Full Text PDF

The enigma of soluble LDLR: could inflammation be the key?

Lipids Health Dis

February 2020

Functional Endoproteolysis Laboratory, Clinical Research Institute of Montreal, 110 avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada.

Soluble low-density lipoprotein receptor (sLDLR) is the circulating ectodomain of transmembrane LDLR. Its blood level strongly correlates with that of triglycerides (TG). This correlation has eluded satisfactory explanation.

View Article and Find Full Text PDF

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction.

View Article and Find Full Text PDF

Objective: PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9.

View Article and Find Full Text PDF

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are novel therapeutics for reducing low-density lipoprotein cholesterol (LDLc). While serious side-effects have not been observed in short-term clinical trials, there remain concerns that long-term PCSK9 inhibition may cause neurocognitive side-effects.

Methods And Results: An adult male with childhood-onset global developmental delay, cerebellar atrophy and severe hypolipidaemia underwent extensive biochemical and genetic investigations.

View Article and Find Full Text PDF

PCSK9 is the last member of the proprotein convertases (PCs) family and its gene is mutated in ~ 2% to 3% of individuals with familial hypercholesterolemia (FH). This protein enhances the degradation of the low-density lipoprotein receptor (LDLR) and hence increases the levels of circulating LDL-cholesterol (LDLc). Studies of the underlying mechanism(s) regulating the activity of different mutations in the PCSK9 gene are ongoing as they enhance our understanding of the biology and clinical relevance of PCSK9 and its partners.

View Article and Find Full Text PDF

The basic proprotein convertases (PCs) furin, PC1/3, PC2, PC5/6, PACE4, PC4, and PC7 are promising drug targets for human diseases. However, developing selective inhibitors remains challenging due to overlapping substrate recognition motifs and limited structural information. Classical drug screening approaches for basic PC inhibitors involve homogeneous biochemical assays using soluble recombinant enzymes combined with fluorogenic substrate peptides that may not accurately recapitulate the complex cellular context of the basic PC-substrate interaction.

View Article and Find Full Text PDF

Solid-Phase Azopeptide Diels-Alder Chemistry for Aza-pipecolyl Residue Synthesis To Study Peptide Conformation.

J Org Chem

May 2019

Laboratory of Chemical Biology and Peptide Research , Clinical Research Institute of Montreal, 110 Pine Avenue West , Montréal , Québec H2W 1R7 , Canada.

Solid-phase chemistry for the synthesis and Diels-Alder reaction of Fmoc-protected azopeptides has been developed and used to construct aza-pipecolyl (azaPip) peptides. Considering their ability to induce electronic and structural constraints that favor cis-amide isomer geometry and type VI β-turn conformation in model peptides, azaPip residues have now been introduced into biologically relevant targets by this enabling synthetic method. Turn conformers were shown to be important for receptor affinity, selectivity, and activity by employing azaPip residues to study the conformational requirements of opioid and cluster of differentiation 36 receptor peptide ligands.

View Article and Find Full Text PDF

The therapeutic application of peptide-based drugs is significantly limited by the rapid proteolytic degradation that occurs when in blood. Encapsulation of these peptide structures within a delivery system, such as liposomes, can greatly improve both stability and target delivery. As part of our work focused on novel ambiphilic mannosylated neoglycolipids as targeted drug delivery systems, we have developed a C14-alkyl-mannopyranoside that forms self-assembled monodisperse liposomes.

View Article and Find Full Text PDF

Associations Between Soluble LDLR and Lipoproteins in a White Cohort and the Effect of PCSK9 Loss-of-Function.

J Clin Endocrinol Metab

September 2018

Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.

Context: Elevated circulating cholesterol-rich low-density lipoprotein (LDL) particles increase coronary artery disease risk. Cell-surface hepatic LDL receptors (LDLRs) clear 70% of these particles from circulation. The ectodomain of LDLR is shed into circulation, preventing it from removing LDL particles.

View Article and Find Full Text PDF

A Genetically Encoded Biosensor Reveals Location Bias of Opioid Drug Action.

Neuron

June 2018

Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address:

Opioid receptors (ORs) precisely modulate behavior when activated by native peptide ligands but distort behaviors to produce pathology when activated by non-peptide drugs. A fundamental question is how drugs differ from peptides in their actions on target neurons. Here, we show that drugs differ in the subcellular location at which they activate ORs.

View Article and Find Full Text PDF

Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained.

J Biol Chem

May 2018

Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada. Electronic address:

The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR).

View Article and Find Full Text PDF