955 results match your criteria: "Clinical Memory Research Unit[Affiliation]"
Nat Aging
November 2024
Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Centre intégré universitaire de santé et de services sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada.
Parkinsonism Relat Disord
January 2025
Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
Variants in GBA1 are important genetic risk factors in Parkinson's disease (PD). GBA1 T369M has been linked to an ∼80 % increased PD risk but the reports are conflicting and the relevance of GBA1 variants in different populations varies. A lack of association between T369M and PD in the Swedish population was recently reported but needs further validation.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Australia. Electronic address:
Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are biomarkers of neuronal injury measurable in cerebrospinal fluid (CSF) and blood. Despite their potential as diagnostic tests for neurodegenerative disorders, it is unclear how they behave in mood and anxiety disorders. We conducted a systematic review and meta-analysis to investigate whether NfL and GFAP concentrations were altered in adults with mood and anxiety disorders compared to healthy controls.
View Article and Find Full Text PDFBrain
October 2024
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 211 46, Malmö, Sweden.
Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests.
View Article and Find Full Text PDFSci Rep
October 2024
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by brain aggregation of β-amyloid (Aβ) peptides and phosphorylated tau (P-tau) proteins. Extracellular vesicles (EVs) can be isolated and studied for potential roles in disease. While several studies have tested plasma-derived EVs in AD, few have analyzed EVs from cerebrospinal fluid (CSF), which are potentially more closely related to brain changes.
View Article and Find Full Text PDFHum Brain Mapp
October 2024
Institute of Gerontology, Wayne State University, Detroit, Michigan, USA.
Inquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements.
View Article and Find Full Text PDFBrain Imaging Behav
October 2024
Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy.
Studies exploring the hippocampal subfield atrophy in Alzheimer's disease (AD) have shown contradictory results. This review aims to disentangle such heterogeneity by investigating the dynamic changes of hippocampal subfields across the AD continuum. We systematically searched the PubMed and EMBASE databases for case-control studies.
View Article and Find Full Text PDFAlzheimers Res Ther
October 2024
Alzheimer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
Alzheimers Dement
December 2024
Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Faculty of Medicine at Lund University, Clinical Research Centre, Malmö, Sweden.
Introduction: We aimed to develop an algorithm to predict the individualized risk of future dementia using brief cognitive tests suitable for primary care.
Methods: We included 612 participants with subjective cognitive decline (SCD) or mild cognitive impairment (MCI) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, assessed for at least 4 years or until progression to dementia. A logistic regression model, using cognitive tests as predictors and dementia progression as an outcome, stratified participants into low, intermediate, or high risk.
Brain Commun
September 2024
Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York City, NY 10032, USA.
medRxiv
September 2024
Clinical Cognitive Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, DE.
Subtle cognitive changes in preclinical Alzheimer's disease (AD) are difficult to detect using traditional pen-and-paper neuropsychological assessments. Remote and unsupervised digital assessments can improve scalability, measurement reliability, and ecological validity, enabling the detection and monitoring of subtle cognitive change. Here, we evaluate such tools deployed in preclinical AD samples, defined as cognitively unimpaired individuals with abnormal levels of amyloid-β (Aβ), or Aβ and tau.
View Article and Find Full Text PDFAlzheimers Res Ther
October 2024
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, 211 46, Lund, Sweden.
Value Health
October 2024
Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
Objectives: Decision-analytic models assessing the value of emerging Alzheimer's disease (AD) treatments are challenged by limited evidence on short-term trial outcomes and uncertainty in extrapolating long-term patient-relevant outcomes. To improve understanding and foster transparency and credibility in modeling methods, we cross-compared AD decision models in a hypothetical context of disease-modifying treatment for mild cognitive impairment (MCI) due to AD.
Methods: A benchmark scenario (US setting) was used with target population MCI due to AD and a set of synthetically generated hypothetical trial efficacy estimates.
BMC Neurol
October 2024
Department of Neurology, TOYOTA Memorial Hospital, Toyota, Aichi, Japan.
Lancet Healthy Longev
October 2024
Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Electronic address:
Blood biomarkers have emerged as accessible, cost-effective, and highly promising tools for advancing the diagnostics of Alzheimer's disease. However, transitioning from cerebrospinal fluid biomarkers to blood biomarkers-eg, to verify amyloid β pathology-requires careful consideration. This Series paper highlights the main challenges in the implementation of blood biomarkers for Alzheimer's disease in different possible contexts of use.
View Article and Find Full Text PDFAlzheimers Dement
November 2024
Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
Alzheimers Dement
November 2024
Neuropsychiatry Centre, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
Alzheimers Dement
November 2024
Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, USA.
Introduction: Delay in diagnosis of posterior cortical atrophy (PCA) syndrome is common, and the lack of familiarity with assessment tools for identifying visual cortical dysfunction is a contributing factor. We propose recommendations for the approach to the evaluation of PCA clinical features during the office visit, the neuropsychological evaluation, and the research setting. A recommended screening battery for eye clinics is also proposed.
View Article and Find Full Text PDFActa Neuropathol
September 2024
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
Neurobiol Aging
December 2024
Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
Sustained attention is important for maintaining cognitive function and autonomy during ageing, yet older people often show reductions in this domain. The role of the underlying neurobiology is not yet well understood, with most neuroimaging studies primarily focused on fMRI. Here, we utilise sMRI to investigate the relationships between age, structural brain volumes and sustained attention performance.
View Article and Find Full Text PDFNat Neurosci
November 2024
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
Animal and computational models of Alzheimer's disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD.
View Article and Find Full Text PDFCell Rep Med
September 2024
Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. Electronic address:
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
While structural and biochemical brain changes are well-documented in ageing, functional neuronal network differences, as indicated by electrophysiological markers, are less clear. Moreover, age-related changes in sustained attention and their associated electrophysiological correlates are still poorly understood. To address this, we analysed cross-sectional baseline electroencephalography (EEG) and cognitive data from the Lifestyle Intervention Study for Dementia Risk Reduction (LEISURE).
View Article and Find Full Text PDFNeurology
October 2024
From the Department of Radiology and Nuclear Medicine (L.L., S.I., L.E.C., M.T., A.M.W., F.B.), Amsterdam University Medical Centre, Vrije Universiteit; Amsterdam Neuroscience (L.L., S.I., L.E.C., A.M.W., H.M.), Brain Imaging, Amsterdam, The Netherlands; Department of Neurology and Laboratory of Neuroscience (A.M., F.V., N.T., V.S.), IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Radiology (S.I.), Copenhagen University Hospital Rigshospitalet; Cerebriu A/S (S.I.), Copenhagen, Denmark; Clinical Memory Research Unit (L.E.C.), Department of Clinical Sciences, Lund University, Malmö, Sweden; Department of Advanced Biomedical Sciences (M.T.), University "Federico II," Naples, Italy; Department of Psychiatry and Neurochemistry (K.B., C.H.S.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburgn; Clinical Neurochemistry Laboratory (K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Neuroradiology Department (C.D.P.), University Hospital of Coventry and Warwickshire (UHCW), Coventry; GE HealthCare (C.F.), Amersham; Dementia Research Centre (N.C.F.), UCL Queen Square Institute of Neurology; UK Dementia Research Institute at University College London (N.C.F.), United Kingdom; Laboratory Alzheimer's Neuroimaging and Epidemiology (G.B.F.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; University Hospitals and University of Geneva (G.B.F.); CIMC - Centre d'Imagerie Médicale de Cornavin (S.H.), Place de Cornavin 18, Genève, Switzerland; Department of Surgical Sciences (S.H.), Radiology, Uppsala University, Sweden; Department of Radiology (S.H.), Beijing Tiantan Hospital, Capital Medical University, P. R. China; Centro de Investigación y Terapias Avanzadas (P.M.-L.), Neurología, CITA-Alzheimer Foundation, San Sebastián, Spain; Centre for Clinical Brain Sciences (D.M., A.W., J.M.W.), The University of Edinburgh; Department of Psychiatry (J.O.B.), School of Clinical Medicine, CB2 0SP, University of Cambridge, United Kingdom; Department of Nuclear Medicine (P.P.), Toulouse University Hospital; ToNIC (P.P.), Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, France; Edinburgh Dementia Prevention (C.R.), Centre for Clinical Brain Sciences, Outpatient Department 2, Western General Hospital, University of Edinburgh Brain Health Scotland (C.R.), Edinburgh, United Kingdom; Alzheimer Center Amsterdam (P.S., B.M.T., P.J.V.), Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc; Amsterdam Neuroscience (P.S., B.M.T., P.J.V.), Neurodegeneration, Amsterdam, The Netherlands; Takeda Pharmaceuticals Ltd. (A.J.S.), Cambridge, MA; Department of Medical Physics and Biomedical Engineering (C.H.S.), Centre for Medical Image Computing (CMIC), University College London (UCL); MRC Unit for Lifelong Health & Ageing at UCL (C.H.S.), University College London; School of Biomedical Engineering and Imaging Sciences (C.H.S.), King's College London, United Kingdom; Department of Pathophysiology and Transplantation (F.V., N.T., V.S.), "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy; Alzheimer Center Limburg (P.J.V.), Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, 6229 GS, Maastricht University, The Netherlands; Division of Neurogeriatrics (P.J.V.), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Medicine (A.W.), Imperial College London; IXICO (R.W.), EC1A 9PN, London, United Kingdom; Université de Normandie (G.C.), Unicaen, Inserm, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", institut Blood-and-Brain @ Caen-Normandie, Cyceron, Caen, France; German Center for Neurodegenerative Diseases (DZNE) (M.E.), Munich, Germany; Ghent Institute for Functional and Metabolic Imaging (GIfMI) (H.M.), Ghent University, Belgium; Barcelonaβeta Brain Research Center (BBRC) (J.D.G.), Pasqual Maragall Foundation; CIBER Bioingeniería (J.D.G.), Biomateriales y Nanomedicina (CIBER-BBN), Madrid; IMIM (Hospital del Mar Medical Research Institute) (J.D.G.); Universitat Pompeu Fabra (J.D.G.), Barcelona, Spain; UK Dementia Research Institute Centre at the University of Edinburgh (J.M.W.); and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, United Kingdom.
Background And Objectives: Vascular risk factors (VRFs) and cerebral small vessel disease (cSVD) are common in patients with Alzheimer disease (AD). It remains unclear whether this coexistence reflects shared risk factors or a mechanistic relationship and whether vascular and amyloid pathologies have independent or synergistic influence on subsequent AD pathophysiology in preclinical stages. We investigated links between VRFs, cSVD, and amyloid levels (Aβ) and their combined effect on downstream AD biomarkers, that is, CSF hyperphosphorylated tau (P-tau), atrophy, and cognition.
View Article and Find Full Text PDF