9 results match your criteria: "Climate and Atmosphere Research Centre (CARE-C)[Affiliation]"

New particle formation from isoprene under upper-tropospheric conditions.

Nature

December 2024

Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.

Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon and the Atlantic and Pacific oceans. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere. Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of -30 °C and -50 °C.

View Article and Find Full Text PDF

The Mediterranean region has long been identified as a climate change hotspot. However, within the Mediterranean, there are smaller sub-areas that exhibit a higher risk of climate change and extremes. Previous research has often focused on indices based on mean climate values, yet extremes are typically more impactful on humans and ecosystems.

View Article and Find Full Text PDF
Article Synopsis
  • The IPBES invasive alien species assessment is the first comprehensive global review focusing on the threats posed by invasive species to biodiversity and human wellbeing, synthesizing over 13,000 scientific and local knowledge sources.
  • It reveals significant and escalating threats from invasive alien species and outlines practical management strategies for addressing these challenges.
  • The assessment has garnered support from 143 member states, urging immediate action against biological invasions to protect ecosystems and communities worldwide.
View Article and Find Full Text PDF

Iodine oxoacids enhance nucleation of sulfuric acid particles in the atmosphere.

Science

December 2023

Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland.

The main nucleating vapor in the atmosphere is thought to be sulfuric acid (HSO), stabilized by ammonia (NH). However, in marine and polar regions, NH is generally low, and HSO is frequently found together with iodine oxoacids [HIO, i.e.

View Article and Find Full Text PDF

Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC.

Sci Data

October 2023

Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland.

The Arctic environment is transforming rapidly due to climate change. Aerosols' abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol properties are also changing in response to climate change.

View Article and Find Full Text PDF

The proliferation of atmospheric datasets is a key outcome from the continued development and advancement of our collective scientific understanding. Yet often datasets describing ostensibly identical processes or atmospheric variables provide widely varying results. As an example, we analyze several datasets representing rainfall over Nepal.

View Article and Find Full Text PDF

A total of 348 daily PM samples were collected at an urban background site of Nicosia, capital of Cyprus, for one-year period (October 2018-October 2019) to assess the origin and sources of fine PM at the Eastern Mediterranean, a poorly characterized area of the world. The samples were analysed for water soluble ionic species, elemental and organic carbon, carbohydrates and trace metals, the combination of which were utilized to identify pollution sources by applying Positive Matrix Factorization (PMF). Six PM sources, namely long-range transport (LRT; 38 %), traffic (20 %), biomass burning (16 %), dust (10 %), sea salt (9 %) and heavy oil combustion (7 %), were identified.

View Article and Find Full Text PDF
Article Synopsis
  • - Chlorine radicals significantly contribute to ozone depletion and methane breakdown in the Arctic, with initial oxidation processes leading to the formation of chlorine oxides and theorized acids (HClO and HClO) that had not been previously detected.
  • - This research observed notable levels of HClO during the spring at various Arctic locations, with concentrations reaching up to 7 × 10 molecules cm, suggesting a connection between rising HClO levels and increased bromine in the atmosphere.
  • - The findings propose that HClO and HClO, being non-photoactive, may be absorbed by aerosols and snow, serving as a previously overlooked sink for reactive chlorine, thus diminishing the oxidation capacity in the Arctic boundary layer
View Article and Find Full Text PDF
Article Synopsis
  • - Various environmental factors significantly impact the life processes of insect vectors that spread human diseases, making experimental design for studying these insects quite complex.
  • - A new pseudo-stage-structured population dynamics model is introduced to better understand insect development under different environmental conditions, accounting for various life stage durations.
  • - The study emphasizes the importance of factors like photoperiod and temperature in mosquito development and demonstrates that life history observations in semi-field settings can effectively predict insect growth patterns year-round.
View Article and Find Full Text PDF