54 results match your criteria: "Chulalongkorn University Bangkok 10330 Thailand.[Affiliation]"

Article Synopsis
  • A series of bimetallic Cu-Ni phyllosilicates (Cu-NiPS) with different nickel to copper ratios were synthesized using an ammonia evaporation hydrothermal method for hydrogenation reactions.
  • These catalysts effectively converted furfural (FF) to furfuryl alcohol (FA) under mild conditions, with the copper-rich variant showing the best performance (88% conversion and 90% selectivity).
  • The superior catalytic activity of the copper-rich alloy is linked to its smaller particle size, higher copper content, and the beneficial interactions between nickel and copper that enhance hydrogen dissociation and stabilization of the carbonyl group.
View Article and Find Full Text PDF

A novel triphenylamine-based dicyano fluorophore (compound 2) was successfully synthesized using a Suzuki cross-coupling reaction, followed by a Knoevenagel condensation catalyzed with baker's yeast. Later, compound 2 was combined with the hydrazine vapor of an electrospun nanofiber sheet, depending on its solid condition. In addition, the electrospinning technique was used to create a nanofiber sheet made of cellulose acetate (CA) combined with compound 2.

View Article and Find Full Text PDF

Bi-enzyme assay coupled with silver nanoplate transformation for insecticide detection.

Nanoscale Adv

October 2024

Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand

A novel colorimetric method utilizing a bi-enzyme assay using silver nanoplates (AgNPls) as a direct signal source was developed to enable rapid insecticide detection. This innovative system leverages the generated HO from the consecutive enzyme-catalyzed reactions of acetylcholine hydrolysis and choline oxidation to introduce oxidative etching of AgNPls, transforming them into aggregated silver nanospheres (AgNSs). The morphological transformation of silver nanoparticles could be observed with the naked eye due to the solution's color shifts from pink-violet to blue-violet.

View Article and Find Full Text PDF

Cellulose, an environmentally friendly material, is abundantly available in Thailand as pulp and has significant potential for use in sustainable plant protection; however, the raw material is not directly suitable for such applications. To address this, colloidal cellulose with high water dispersibility was synthesised by treating Eucalyptus pulp with sulphuric acid (HSO). The optimised conditions involved a 24 hour treatment, producing colloidal cellulose with an average particle size of 0.

View Article and Find Full Text PDF
Article Synopsis
  • - This study introduces a new composite material made by integrating laser-induced graphene (LIG) onto a polylactic acid (PLA) substrate, resulting in a shape memory polymer composite (SMPC) that can respond to multiple stimuli and detect its own deformation.
  • - LIG was successfully transferred onto the PLA substrate using hot compression, showing good adhesion and optimal electrical properties, which enable temperature control through Joule heating when power is applied.
  • - The composite’s ability to react to infrared light and self-sense deformation via changes in electrical resistance provides a simple manufacturing method, paving the way for advanced materials that are both responsive and capable of real-time monitoring without the need for additional components.
View Article and Find Full Text PDF

This research's main objective is to identify the level of contamination in drinking water in Adama town and its environs by employing PIG, GIS and HHRA. The physical-chemical parameters of groundwater were determined, and the results were compared to regional and global drinking water quality guidelines. The pH of groundwater is alkaline, and the contents of Ca, Na, HCO , and F in the majority of samples surpassed the permissible drinking limit.

View Article and Find Full Text PDF

The roots of yielded a total of 17 compounds, comprising two new compounds (1-2), one new natural product (3), and 14 known compounds (4-17). The structures of new compounds were determined through the analysis of their spectroscopic data, including NMR, MS, UV, FT-IR, optical rotation, and CD. The anti-inflammatory activity of the isolated pure compounds was assessed using lipopolysaccharide-activated BV2 microglial cells.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated how loading titanium nitride (TiN) nanoparticles into a bio-based benzoxazine/epoxy copolymer affects the performance of the composite, particularly focusing on its shape memory properties under sunlight irradiation.
  • Researchers found that varying levels of TiN (from 1 to 7 wt%) improved the light absorbance, thermal stability, and physical properties (visco-elastic and tensile) of the composites, with an optimum performance observed at TiN-5(wt%).
  • The composite with the highest TiN loading (TiN-7(wt%)) demonstrated significant enhancements in shape memory performance, achieving a shape fixity ratio of 95% and a recovery time of 38 seconds, showcasing the
View Article and Find Full Text PDF

Nanocrystalline carbon materials exhibit promising potential for sustainable and high-performance applications in electronics, energy storage, and environmental technologies. While sugars are abundant and renewable, converting them to graphitic carbon usually requires high temperature treatment. Here, we present a groundbreaking approach for synthesizing nanocrystalline carbon from readily available sugars such as glucose, fructose, and sucrose at ambient pressure and temperature.

View Article and Find Full Text PDF

An ultra-fast green synthesis of defective titanium dioxide (TiO) photocatalysts was conducted by the microwave-assisted method using l-ascorbic acid (l-As) as a reducing agent. Effect of l-As concentrations on the chemical-, optical- and photoelectrochemical properties as well as the photocatalytic performance towards the hydrogen (H) production was explored. The obtained TiO nanoparticles (NPs) illustrated the brown fine powders with different brownness levels depending on the concentrations of l-As.

View Article and Find Full Text PDF
Article Synopsis
  • - This text is a correction notice for a previously published article, identified by the DOI: 10.1039/D3NA01026K.
  • - The correction is likely to address errors or inaccuracies found in the original publication.
  • - Readers are encouraged to refer to the corrected version for accurate information and findings.
View Article and Find Full Text PDF

We investigated the effects of chitosan (CS) on the hydrogen adsorption and reversibility of hierarchical carbon scaffold (HCS) loaded with Ni nanoparticles. As size-controllable, stabilizing, and shape-directing agents for the green synthesis of metal nanoparticles of CS, Ni nanoparticles with uniform distribution and shape are deposited onto HCS. The latter results in the superior specific surface area of Ni nanoparticles for hydrogen chemisorption.

View Article and Find Full Text PDF

High silica contents rubber composites are favored in the green tire industry for their ability to reduce rolling resistance. However, achieving effective silica dispersion in natural rubber, particularly at high silica content, poses a challenge. In addition, the choice of impeller configuration significantly influences mixing performance, especially in commercial production, which requires large mixing tanks.

View Article and Find Full Text PDF

In this work, shape memory polymers (SMPs) were developed from a combination of a bio-based benzoxazine (BZ) monomer and polyurethane prepolymer (PU-prepolymer), both derived from bio-based raw materials. The bio-based BZ monomer (V-fa monomer) was synthesized through a Mannich condensation reaction using vanillin, paraformaldehyde, and furfurylamine. The bio-based PU-prepolymer was obtained by reacting palm oil polyol (MW = 1400 Da) and toluene diisocyanate (TDI).

View Article and Find Full Text PDF

The flexibility of protein structure plays a crucial role in enzyme stability and catalysis. Among the amino acids, glycine is particularly important in conferring flexibility to proteins. In this study, the effects of flexible glycine residues in 121 inulosucrase (LrInu) on stability and inulin profile were investigated through glycine-to-proline substitutions.

View Article and Find Full Text PDF

In this study, silk fibroin (SF) was utilized as the starting material to fabricate physically crosslinked hydrogels. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was synthesized and characterized as a drug carrier, with insulin as the model drug. PEDOT:PSS, with a high electrical conductivity of 1666 ± 49 S cm, interacted with insulin molecules electrostatic interaction by replacing the dopant PSS molecules.

View Article and Find Full Text PDF

Drug discovery is a process that finds new potential drug candidates for curing diseases and is also vital to improving the wellness of people. Enhancing deep learning approaches, , molecular generation models, increases the drug discovery process's efficiency. However, there is a problem in this field in creating drug candidates with desired properties such as the quantitative estimate of druglikeness (QED), synthetic accessibility (SA), and binding affinity (BA), and there is a challenge for training a generative model for specific protein targets that has less pharmaceutical data.

View Article and Find Full Text PDF

Bio-guided isolation was applied to Vietnamese L. to find alpha-glucosidase inhibition. Fifteen compounds were isolated and structurally determined, including two new compounds, marchatoside (7) and marchanol (8), along with thirteen known compounds: marchantin A (1), isoriccardin C (2), riccardin C (3), marchantin K (4), lunularin (5), 3-(3,4-dimethoxybenzyl)-5,7-dimethoxyphthalide (6), vitexilactone (9), 12-oleanene-3-one (10), 3,11-dioxoursolic acid (11), ursolic acid (12), artemetin (13), kaempferol (14), and quercetin (15).

View Article and Find Full Text PDF

The use of organophosphate (OPs) pesticides is widespread in agriculture and horticulture, but these chemicals can be lethal to humans, causing fatalities and deaths each year. The inhibition of acetylcholinesterase (AChE) by OPs leads to the overstimulation of cholinergic receptors, ultimately resulting in respiratory arrest, seizures, and death. Although 2-pralidoxime (2-PAM) is the FDA-approved drug for treating OP poisoning, there is difficulty in blood-brain barrier permeation.

View Article and Find Full Text PDF

Sorafenib (SOR) is an oral multikinase inhibitor that effectively hampers the growth and spread of cancer cells by targeting angiogenesis and proliferation. However, SOR tablets (Nexavar) have limited oral bioavailability, ranging from 38% to 49%, due to their low water solubility. To address this issue, cyclodextrins (CDs), widely used to enhance the solubility and stability of lipophilic drugs by encapsulating them within their molecular structure, were considered in this study.

View Article and Find Full Text PDF

Artificial intelligence has become more prevalent in broad fields, including drug discovery, in which the process is costly and time-consuming when conducted through wet experiments. As a result, drug repurposing, which tries to utilize approved and low-risk drugs for a new purpose, becomes more attractive. However, screening candidates from many drugs for specific protein targets is still expensive and tedious.

View Article and Find Full Text PDF

The loading dependence of self-diffusion coefficients () of NO, SO, and their equimolar binary mixture in MIL-47(V) have been investigated by using classical molecular dynamics (MD) simulations. The of NO are found to be two orders of magnitude greater than SO at low loadings and temperatures, and its decreases monotonically with loading. The of SO exhibit two diffusion patterns, indicating the specific interaction between the gas molecules and the MIL-47(V) lattice.

View Article and Find Full Text PDF

Central nervous system (CNS) diseases are a significant health burden globally, with the development of novel drugs lagging behind clinical needs. Orchidaceae plants have been traditionally used to treat CNS diseases, leading to the identification of therapeutic leads against CNS diseases from the orchid plant in the present study. The study isolated and characterized ten compounds, including a previously undescribed biphenanthrene derivative, Aerifalcatin (1), for the first time from the extract.

View Article and Find Full Text PDF

Heparan sulfate (HS) glycosaminoglycans are widely expressed on the mammalian cell surfaces and extracellular matrices and play important roles in a variety of cell functions. Studies on the structure-activity relationships of HS have long been hampered by the challenges in obtaining chemically defined HS structures with unique sulfation patterns. Here, we report a new approach to HS glycomimetics based on iterative assembly of clickable disaccharide building blocks that mimic the disaccharide repeating units of native HS.

View Article and Find Full Text PDF
Article Synopsis
  • The ketonization of palmitic acid leads to the formation of hydrocarbons through a cascade reaction involving McLafferty rearrangement using lepidocrocite-type alkali titanate catalysts at temperatures ≤400 °C.
  • The study shows that higher temperatures and basic sites at the oxygen atom improve hydrocarbon yield by facilitating ketone scissions.
  • Using layered alkali titanate catalysts promotes the conversion of palmitic acid to hydrocarbons, achieving approximately 47% yield while significantly reducing the oxygen content.
View Article and Find Full Text PDF