8 results match your criteria: "Chinese University of Hong Kong Shenzhen 518172[Affiliation]"

The 20S proteasome is an attractive drug target for the development of anticancer agents because it plays an important role in cellular protein degradation. It has a threonine residue that can act as a nucleophile to attack inhibitors with an electrophilic warhead, forming a covalent adduct. Fundamental understanding of the reaction mechanism between covalent inhibitors and the proteasome may assist the design and refinement of compounds with the desired activity.

View Article and Find Full Text PDF

This paper presents a novel low-cost and fully-portable instrumented shoe system for gait phase detection. The instrumented shoe consists of 174 independent sensing units constructed based on an off-the-shelf force-sensitive film known as the Velostat conductive copolymer. A zero potential method was implemented to address the crosstalk effect among the matrix-formed sensing arrays.

View Article and Find Full Text PDF

The 2019 novel coronavirus(COVID-19) spreads rapidly, and the large-scale infection leads to the lack of medical resources. For the purpose of providing more reasonable medical service to COVID-19 patients, we designed an novel adjuvant therapy system integrating warning, therapy, and post-therapy psychological intervention. The system combines data analysis, communication networks and artificial intelligence(AI) to design a guidance framework for the treatment of COVID-19 patients.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) with boron-nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application.

View Article and Find Full Text PDF

Cytokines are signaling molecules between cells in immune system. Cytokine storm, due to the sudden acute increase in levels of pro-inflammatory circulating cytokines, can result in disease severity and major-organ damage. Thus, there is urgent need to develop rapid, sensitive, and specific methods for monitoring of cytokines in biology and medicine.

View Article and Find Full Text PDF

The outbreak of novel coronavirus pneumonia (COVID-19) has caused mortality and morbidity worldwide. Oropharyngeal-swab (OP-swab) sampling is widely used for the diagnosis of COVID-19 in the world. To avoid the clinical staff from being affected by the virus, we developed a 9-degree-of-freedom (DOF) rigid-flexible coupling (RFC) robot to assist the COVID-19 OP-swab sampling.

View Article and Find Full Text PDF

Herein, a core-shell tellurium-selenium (Te-Se) nanomaterial with polymer-tailed and lateral heterojunction structures is developed as a photothermal absorber in a bionic solar-evaporation system. It is further revealed that the amorphous Se shell surrounds the crystalline Te core, which not only protects the Te phase from oxidation but also serves as a natural barrier to life entities. The core (Te)-shell (Se) configuration thus exhibits robust stability enhanced by 0.

View Article and Find Full Text PDF

The targeted and simultaneous delivery of diverse cargoes with vastly different properties by the same vehicle is highly appealing but challenging. Here, a bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled pamidronate-magnesium nanoparticles for the localized elution and on-demand simultaneous release of bioactive ions and small molecule drugs is described. The obtained nanocomposite hydrogels exhibit excellent injectability and efficient stress relaxation, thereby allowing easy injection and consequent adaptation of hydrogels to bone defects with irregular shapes.

View Article and Find Full Text PDF