50,213 results match your criteria: "Chinese Academy of Sciences (CAS) &Shanghai Jiao Tong University School of Medicine (SJTUSM)[Affiliation]"

Proximity-Induced Superconductivity in Ferromagnetic FeGeTe and Josephson Tunneling through a van der Waals Heterojunction.

ACS Nano

January 2025

International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.

Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.

View Article and Find Full Text PDF

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification.

Gastric Cancer

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.

Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.

View Article and Find Full Text PDF

A simple and effective method to remove pigments from heterologous secretory proteins expressed in Pichia pastoris.

Adv Biotechnol (Singap)

February 2024

CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.

View Article and Find Full Text PDF

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

A human antibody derived from original SARS-CoV-2 infection effectively neutralizes omicron.

Adv Biotechnol (Singap)

January 2024

Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) Variants of Concern (VOCs), such as the Omicron sub-variants, present significant challenges in pandemic control due to their capacity to escape antibodies and breach vaccine protections. Discovering antibodies that can tolerate mutations in VOCs and understanding their underlying mechanisms is crucial for developing therapeutics for COVID-19 patients, particularly those for whom other therapies may be unsuitable. Here, we report the neutralization of the Omicron variant by FD20, a broadly active human monoclonal antibody.

View Article and Find Full Text PDF

Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.

Adv Biotechnol (Singap)

April 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.

In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.

View Article and Find Full Text PDF

Exploring the challenges of RNAi-based strategies for crop protection.

Adv Biotechnol (Singap)

July 2024

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

RNA silencing (or RNA interference, RNAi) initiated by double-stranded RNAs is a conserved mechanism for regulating gene expression in eukaryotes. RNAi-based crop protection strategies, including host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS) and microbe-induced gene silencing (MIGS), have been successfully used against various pests and pathogens. Here, we highlight the challenges surrounding dsRNA design, large-scale production of dsRNA and dsRNA delivery systems.

View Article and Find Full Text PDF

In-Cell Mass Spectrometry and Ultraviolet Photodissociation Navigates the Intracellular Protein Heterogeneity.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Reaction Dynamics, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Directly probing the heterogeneous conformations of intracellular proteins within their native cellular environment remains a significant challenge in mass spectrometry (MS). Here, we establish an in-cell MS and ultraviolet photodissociation (UVPD) strategy that directly ejects proteins from living cells into a mass spectrometer, followed by 193 nm UVPD for structural analysis. Applying this approach to calmodulin (CaM), we reveal that it adopts more extended conformations within living cells compared with purified samples , highlighting the unique influence of intracellular environments on protein folding.

View Article and Find Full Text PDF

Omnidirectionally Stretchable Spin-Valve Sensor Array with Stable Giant Magnetoresistance Performance.

ACS Nano

January 2025

CAS Key Laboratory of Magnetic Materials and Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.

Flexible magnetic sensors, which have advantages such as deformability, vector field sensing, and noncontact detection, are an important branch of flexible electronics and have significant applications in fields such as magnetosensitive electronic skin. Human skin surfaces have complicated deformations, which pose a demand for magnetic sensors that can withstand omnidirectional strain while maintaining stable performance. However, existing flexible magnetic sensor arrays can only withstand stretching along specific directions and are prone to failure under complicated deformations.

View Article and Find Full Text PDF

Ag@g-CN/MoS heterostructure for efficient photocatalytic oxygen evolution under visible light irradiation.

Chem Commun (Camb)

January 2025

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, P. R. China.

Herein, an Ag@g-CN/MoS heterostructure is successfully synthesized for efficient solar-to-water oxidation. UV-vis DRS and steady-state PL analyses reveal the narrow band gap (2.10 eV) and efficient charge separation properties of the Ag nanoparticles and MoS, respectively.

View Article and Find Full Text PDF

Feeding disruptions lead to a significant increase in disease modules in adult mice.

Heliyon

January 2025

CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.

Feeding disruption is closely linked to numerous diseases, yet the underlying molecular mechanisms remain an important but unresolved issue at the molecular level. We hypothesize that, at the network level, dietary disruptions can alter gene co-expression patterns, leading to an increase in disease-associated modules, and thereby elevating the likelihood of disease occurrence. Here, we investigate this hypothesis using transcriptomic data from a large cohort of adult mice subjected to feeding disruptions.

View Article and Find Full Text PDF

Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE): Science and Mission Overview.

Space Sci Rev

January 2025

Dept. of Space and Climate Physics, MSSL/UCL, Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT UK.

The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) was proposed to the Chinese Academy of Science (CAS) and the European Space Agency (ESA) following a joint call for science missions issued in January 2015. SMILE was proposed by a team of European and Chinese scientists, led by two mission Co-PIs, one from China and one from Europe. SMILE was selected in June 2015, and its budget adopted by the Chinese Academy of Sciences in November 2016 and the ESA Science Programme Committee in March 2019, respectively.

View Article and Find Full Text PDF

Background: Research on long COVID in China is limited, particularly in terms of large-sample epidemiological data and the effects of recent SARS-CoV-2 sub-variants. China provides an ideal study environment owing to its large infection base, high vaccine coverage, and stringent pre-pandemic measures.

Methods: This retrospective study used an online questionnaire to investigate SARS-CoV-2 infection status and long COVID symptoms among 74,075 Chinese residents over one year.

View Article and Find Full Text PDF

Centrosome aberrations are a common feature in human cancer cells. Our previous studies demonstrated that the centrosomal protein Tax1 binding protein 2 (TAX1BP2) inhibits centrosome overduplication and is underexpressed in hepatocellular carcinoma (HCC). Here, we report that Intratumoral TAX1BP2 promotes tumor lymphocyte infiltration and enhances the efficacy of anti-PD-1 therapy.

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield.

Nature

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Soil alkalinization and global warming are predicted to pose major challenges to agriculture in the future, as they continue to accelerate, markedly reducing global arable land and crop yields. Therefore, strategies for future agriculture are needed to further improve globally cultivated, relatively high-yielding Green Revolution varieties (GRVs) derived from the SEMIDWARF 1 (SD1) gene. Here we propose that precise regulation of the phytohormone gibberellin (GA) to optimal levels is the key to not only confer alkali-thermal tolerance to GRVs, but also to further enhance their yield.

View Article and Find Full Text PDF

Promoting caproate production using anaerobically digested sludge-derived biochar: Performances, mechanisms, and environmental impacts.

Bioresour Technol

January 2025

School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:

Carbon chain elongation offers a promising pathway for converting waste resources into caproate. However, challenges in yield and selectivity have limited its broader application. To address these limitations, anaerobically digested sludge-derived biochar (ADS-B) was incorporated into the carbon chain elongation process.

View Article and Find Full Text PDF

Screening and Preparation of Nanobodies for SIGLEC-15 Detection.

Protein Expr Purif

January 2025

Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, 065001, China. Electronic address:

As an important member of the Siglec family, SIGLEC-15 plays an important role in osteoclast differentiation, bone remodeling, and tumor immune evasion. In the tumor microenvironment, SIGLEC-15 functions independently of the B7-H1/PD-1 pathway. In this study, the SIGLEC-15 fusion protein (SIGLEC-15-Fc) was successfully expressed and purified using a eukaryotic expression system.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM)-dependent histamine N-methyltransferase (HNMT) is a crucial enzyme involved in histamine methylation, playing an important role in the epigenetic modification of biology. It entails the addition of methyl groups to histamine molecules, thereby regulating gene expression, cellular signal transduction, and other biological processes. Therefore, gaining a profound understanding of the detailed mechanism underlying HNMT-mediated methylation reactions is instrumental in elucidating the role of histamine methylation in biology.

View Article and Find Full Text PDF

A mitochondria-targeted nanozyme with enhanced antioxidant activity to prevent acute liver injury by remodeling mitochondria respiratory chain.

Biomaterials

January 2025

Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:

Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.

View Article and Find Full Text PDF

Ligand guided in vivo crosslinking and affinity purification mass spectrometry for identifying membrane receptors of Tau.

Talanta

January 2025

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Misfolded neurotoxic proteins, such as Tau protein, spread within the brain in many neurodegenerative diseases. Receptors play an important role in the recognition of spreading proteins for endocytosis. Blocking the receptors is essential to inhibit neurotoxic proteins spreading in the brain.

View Article and Find Full Text PDF

Direct Assembly of Grooved Micro/Nanofibrous Aerogel for High-Performance Thermal Insulation via Electrospinning.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.

View Article and Find Full Text PDF

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs.

Sci Adv

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.

Hong-Ou-Mandel (HOM) interference is the foundation of quantum optics to test the degree of indistinguishability of two incoming photons, playing a key role in quantum communication, sensing, and photonic quantum computing. Realizing high-visibility HOM interference with massively parallel optical channels is challenging due to the lack of available natural optical references for aligning independent arrayed laser pairs. Here, we demonstrate 50 parallel comb-teeth pairs of continuous-wave weak coherent photons HOM interference using two independently frequency post-aligned soliton microcombs (SMCs), achieving an average fringe visibility over 46%.

View Article and Find Full Text PDF

Rhodium-Catalyzed Homogeneous Asymmetric Hydrogenation of Naphthol Derivatives.

J Am Chem Soc

January 2025

National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.

Due to their strong aromaticity and difficulties in chemo-, regio-, and enantioselectivity control, asymmetric hydrogenation of naphthol derivatives to 1,2,3,4-tetrahydronaphthols has remained a long-standing challenge. Herein, we report the first example of homogeneous asymmetric hydrogenation of naphthol derivatives catalyzed by tethered rhodium-diamine catalysts, affording a wide array of optically pure 1,2,3,4-tetrahydronaphthols in high yields with excellent regio-, chemo-, and enantioselectivities (up to 98% yield and >99% ee). Mechanistic studies with experimental and computational approaches reveal that fluorinated solvent 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) plays vital roles in the control of reactivity and selectivity, and 1-naphthol is reduced via a cascade reaction pathway, including dearomative tautomerization, 1,4-hydride addition, and 1,2-hydride addition in sequence.

View Article and Find Full Text PDF