423,253 results match your criteria: "Chinese Academy of Sciences; Shanghai Center for Brain Science and Brain-inspired Technology[Affiliation]"

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

Modular Synthesis of Planar-Chiral Cyclononenes via -Retentive Trapping of π-Allyl-Pd Dipoles.

J Am Chem Soc

January 2025

Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.

-cycloalkenes are abundant in bioactive natural products and have been used as powerful tools in chemical biology and drug discovery. However, strategies for the modular synthesis of -cycloalkenes, especially planar-chiral medium-sized ones, with high efficiency and selectivity, still remain elusive. Herein, we report a Pd-catalyzed asymmetric [7 + 2] cyclization strategy to address this challenge.

View Article and Find Full Text PDF

Although cathepsin S is transported from the spleen to the liver, where it cleaves collagen XVIII to produce endostatin and plays a critical role in the onset of early liver fibrosis, the relationship between liver fibrosis and spleen function remains underexplored. Given the roles of phosphorylation in disease, understanding its regulatory mechanism in early liver fibrosis is crucial. Despite advances in mass spectrometry enhancing phosphoproteomics, its application is limited by small clinical samples and subtle protein changes.

View Article and Find Full Text PDF

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

A Review of Laboratory Studies on the Heterogeneous Chemistry of NO: Mechanisms and Uptake Kinetics.

J Phys Chem A

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

RING finger protein 5 is a key anti-FMDV host factor through inhibition of virion assembly.

PLoS Pathog

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.

Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication.

View Article and Find Full Text PDF

Plant height is a crucial agronomic characteristic that substantially influences soybean [Glycine max (L.) Merr.] yield.

View Article and Find Full Text PDF

Synthesis of Unprotected Racemic Tryptophan Derivatives Using Gramine via Nickel(II) Complex.

J Org Chem

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences555 Zu Chong Zhi Road, Shanghai 201203, P. R. China.

A chemical method for the preparation of nonprotected tryptophan via nickel(II) complexes under simple operating conditions was established. The carefully designed nickel(II) glycinates are inexpensive and can be quantitatively recovered releasing the target tryptophans in high yield. The method has a wide range of synthesis generality, allowing the preparation of various substituted tryptophans.

View Article and Find Full Text PDF

Oral iron sulfide prevents acute alcohol intoxication by initiating the endogenous multienzymatic antioxidant defense system.

Sci Adv

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.

Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.

View Article and Find Full Text PDF

Merging SOMO activation with transition metal catalysis: Deoxygenative functionalization of amides to β-aryl amines.

Sci Adv

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).

Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.

View Article and Find Full Text PDF

Rapid radiation of a plant lineage sheds light on the assembly of dry valley biomes.

Mol Biol Evol

January 2025

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa.

View Article and Find Full Text PDF

An expanding universe of mutational signatures and its rapid evolution in single-stranded RNA viruses.

Mol Biol Evol

January 2025

Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments.

View Article and Find Full Text PDF

Chirality Interplay of Peptide and Saccharide on Glycopeptide Self-Assembly.

Nano Lett

January 2025

Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.

Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.

View Article and Find Full Text PDF

Multidimensional Resonance Controlled by Critical Size in Printed Binary Colloidal Crystals for High-Contrast Imaging.

J Am Chem Soc

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Colloidal crystal engineering enables the precise construction of structures with remarkable properties. However, the flexible and synergistic regulation of multiple properties of colloidal crystals remains a significant challenge. Here, we inspire from Brazilian opals to self-assemble polymer nanoparticles in the gaps of a single-layer opal substrate to fabricate large-scale binary colloidal crystals (BCCs).

View Article and Find Full Text PDF

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Introduction: To examine the longitudinal association between estimated pulse wave velocity (ePWV) and cognitive phenotypes in a rural Chinese older population.

Methods: This population-based study included 1857 dementia-free participants (age ≥60 years) who were examined in 2014 and followed in 2018. ePWV was calculated using age and mean blood pressure (MBP).

View Article and Find Full Text PDF

Moyamoya disease (MMD) is a type of cerebrovascular disease characterized by occlusion of the distal end of the internal carotid artery and the formation of collateral blood vessels. Over the past 20 years, the landscape of research on MMD has significantly transformed. In this review, we provide insights into the pathogenesis, diagnosis, and therapeutic interventions in MMD.

View Article and Find Full Text PDF

Genome-Wide Analysis of the Gene Family in .

Plant Direct

January 2025

Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.

The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.

View Article and Find Full Text PDF

Brain-inspired wiring economics for artificial neural networks.

PNAS Nexus

January 2025

School of Physical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

Wiring patterns of brain networks embody a trade-off between information transmission, geometric constraints, and metabolic cost, all of which must be balanced to meet functional needs. Geometry and wiring economy are crucial in the development of brains, but their impact on artificial neural networks (ANNs) remains little understood. Here, we adopt a wiring cost-controlled training framework that simultaneously optimizes wiring efficiency and task performance during structural evolution of sparse ANNs whose nodes are located at arbitrary but fixed positions.

View Article and Find Full Text PDF

Objective: To evaluate systematically the feasibility and effectiveness of His Bundle Pacing (HBP) for cardiac resynchronization therapy.

Methods: A comprehensive search was conducted in PubMed, EMbase, WOS, Cochrane Library, Medline, and SinoMed for studies published between December 2003 and December 2023. Primary clinical outcomes included implantation success, QRS wave duration, pacing threshold, left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), New York Heart Association (NYHA) cardiac function class, and complications.

View Article and Find Full Text PDF

Honeysuckle is a conventional Chinese medicine with several therapeutic applications. With the advancement of modern scientific technologies, Honeysuckle's pharmacological effects and medicinal properties have been investigated more thoroughly. Studies demonstrate that the bioactive compounds in Honeysuckle possess anti-inflammatory effects via several mechanisms, protecting the cardiovascular system.

View Article and Find Full Text PDF

Background: Pheochromocytoma is a rare neuroendocrine tumor, and bilateral pheochromocytomas is even less common. Due to the limited experience with such cases, this study aims to explore the optimal surgical strategy, assess the potential advantages of robotic surgery, and evaluate surgical outcomes for managing bilateral pheochromocytomas.

Case Description: This report presented a case of a 33-year-old woman with bilateral pheochromocytomas related to multiple endocrine neoplasia type 2a (MEN2A), who was successfully managed by synchronous transperitoneal robotic-assisted bilateral cortical-sparing adrenalectomy.

View Article and Find Full Text PDF