7 results match your criteria: "Chinese Academy of Science Institute of Geochemistry[Affiliation]"

Curved surface effect and manipulation of electronic states in nanosilicon.

Sci Rep

December 2017

State Key Laboratory of Environmental Geochemistry Institute of Geochemistry, Chinese Academy of Science Institute of Geochemistry, Guiyang, 550003, China.

It is interesting in low-dimensional nanostructures of silicon that the two quantum effects play different roles in nanosilicon emission, in which the quantum confinement (QC) effect opens band gap and makes emission shift into shorter wavelengths (blue-shift) as the size of the nanocrystals is reduced; however the breaking symmetry originating from impurities on nanosilicon produces the localized electronic states in band gap and makes emission shift into longer wavelengths (red-shift). The results of experiment and calculation demonstrated that the energy levels of nanosilicon can be manipulated through these quantum effects, where the curved surface (CS) effect of impurity atoms bonding on nanosilicon is important in breaking symmetry of nanosilicon system. Here, the CS effect plays an important role on impuritied nanosilicon in smaller scale with larger surface curvature, in which a few characteristic parameters have been found to describe the breaking symmetry of nanosilicon system, such as bonding angle and projecting length of bonds on curved surface.

View Article and Find Full Text PDF

We have fabricated the multiple nanolayers impuritied on silicon pillars for Si solar cells to pick up photons in ultraviolet and infrared region of solar spectra, in which the localized states originated from nanosilicon doped with oxygen are built to avoid Auger recombination, and some interesting quantum phenomena in the localized states have been observed. The quantum effect of photo-generated carriers has been observed in I-V curve measurement on the photovoltaic sample prepared in oxygen by using nanosecond pulsed laser. More interesting, the twin states of quantum vibration are measured in the localized states originated from the impuritied nanosilicon, which provides a stable reservoir for electrons in the photovaltaic system.

View Article and Find Full Text PDF

We fabricated the black silicon (BS) structures by using nanosecond pulsed laser (ns-laser) in vacuum or in oxygen environment. It is interesting that the enhanced visible emission occurs in the photoluminescence (PL) spectra measured at room temperature and at lower temperature on the BS surface after annealing, in which lasing near 600 nm is observed on the BS surface with Purcell cavity structure. It is demonstrated in the PL spectra analysis that the electronic states in the nanocrystal doped with oxygen play a main role in the visible emission on the BS surface.

View Article and Find Full Text PDF

It is reported that the silicon nanocrystals (NCs) are fabricated by using self-assembly growth method with the annealing and the electron beam irradiation processes in the pulsed laser depositing, on which the visible lasing with higher gain (over 130 cm) and the enhanced emission in optical telecommunication window are measured in photoluminescence (PL). It is interesting that the enhanced visible electroluminescence (EL) on silicon nanocrystals (Si-NCs) is obviously observed by the naked eyes, and the light-emitting diode (LED) of the Si-NCs with external quantum efficiency of 20% is made on silicon chip in our laboratory. A four-level system is built for emission model in nanosilicon, in which the PL and EL measurement and transmission electron microscope (TEM) analysis demonstrate that the pumping levels with shorter lifetime from the rising energy of the Si quantum dots due to the quantum confinement effect occur, and the electronic localized states with longer lifetime owing to impurities bonding on Si-NCs surface are formed in the crystallized process to produce the inversion of population for lasing, where the optical gain is generated.

View Article and Find Full Text PDF

In our experiment, it was observed that the emission of direct-gap band in germanium with Ge-GeSn layers on one-dimensional (1D) structure. The results of experiment and calculation demonstrate that the uniaxial tensile strain in the (111) and (110) direction can efficiently transform Ge to a direct bandgap material with the bandgap energy useful for technological application. It is interested that under the tensile strain from Ge-GeSn layers on 1D structure in which the uniaxial strain could be obtained by curved layer (CL) effect, the two bandgaps EΓg and ELg in the (111) direction become nearly equal at 0.

View Article and Find Full Text PDF

Silicon nanocrystal growth under irradiation of electron beam.

Sci Rep

November 2015

State Key Laboratory of Environmental Geochemistry Institute of Geochemistry, Chinese Academy of Science Institute of Geochemistry, Guiyang 550003 (China).

In our experiment, it was observed that silicon nanocrystal rapidly grows with irradiation of electron beam on amorphous silicon film prepared by pulsed laser deposition, and shape of silicon nanocrystal is usually sphere in smaller nanoscale with less exposure time under electron beam, in which the quantum dots are prepared in nanoscale near 3 nm. In the electron interaction process, it was investigated that the various crystals structures in different orientations occur in the same time and the condensed structures of silicon nanocrystal are changed with different impurity atoms in silicon film.

View Article and Find Full Text PDF

Magic electron affection in preparation process of silicon nanocrystal.

Sci Rep

April 2015

State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Science Institute of Geochemistry, Guiyang 550003(China).

It is very interesting that magic electron affection promotes growth of nanocrystals due to nanoscale characteristics of electronic de Broglie wave which produces resonance to transfer energy to atoms. In our experiment, it was observed that silicon nanocrystals rapidly grow with irradiation of electron beam on amorphous silicon film prepared by pulsed laser deposition (PLD), and silicon nanocrystals almost occur in sphere shape on smaller nanocrystals with less irradiation time of electron beam. In the process, it was investigated that condensed structures of silicon nanocrystals are changed with different impurity atoms in silicon film, in which localized states emission was observed.

View Article and Find Full Text PDF