1 results match your criteria: "ChinaDepartment of PharmacologyChina Pharmaceutical University[Affiliation]"

BBT improves glucose homeostasis by ameliorating β-cell dysfunction in type 2 diabetic mice.

J Endocrinol

March 2015

Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, ChinaCollege of Life and Environmental SciencesShanghai Normal University, 100 Guilin Road, Shanghai 200234, ChinaDepartment of PharmacologyChina Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca(2) (+) channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells.

View Article and Find Full Text PDF