42,330 results match your criteria: "China agricultural University[Affiliation]"

GsMYB10 encoding a MYB-CC transcription factor enhances the tolerance to acidic aluminum stress in soybean.

BMC Plant Biol

December 2024

Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.

View Article and Find Full Text PDF

Impacts of anthropogenic disturbances on antibiotic resistomes in biological soil crusts on the Qinghai-Tibetan Plateau.

Environ Pollut

December 2024

Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, PR China. Electronic address:

Biological soil crusts (BSCs) are the main landscape on the Qinghai-Tibetan Plateau and an ecological indicator of human disturbance. Information about antibiotic resistomes in BSCs on the Qinghai-Tibetan Plateau can provide baseline for the risk assessment and management of resistomes and yet to be explored. This work investigated the profiles and geographic patterns of antibiotic resistomes in BSCs along the Lhasa River and their response to anthropogenic activities for the first time.

View Article and Find Full Text PDF

Toxic effects of chlorantraniliprole on zebrafish (Danio rerio) at different developmental stages under antibiotic pressure.

Environ Pollut

December 2024

Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China. Electronic address:

Pesticides and antibiotics have been frequently reported in the environment, but it remains unclear whether antibiotics affect the toxicity of pesticides to aquatic organisms. In this study, the acute, developmental and reproductive toxicity effects of the pesticide chlorantraniliprole on zebrafish at different developmental stages under pressure of ciprofloxacin and erythromycin at environmental concentration were explored. Chlorantraniliprole, ciprofloxacin, and erythromycin are all low toxic to zebrafish (LC > 100 mg/L), and environmental concentrations of antibiotics have no effect on the acute toxicity of chlorantraniliprole to zebrafish.

View Article and Find Full Text PDF

ZmGolS1 underlies natural variation of raffinose content and salt tolerance in maize.

J Genet Genomics

December 2024

State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Salt stress significantly inhibits crop growth and development, and mitigating this can enhance salt tolerance in various crops. Previous studies have shown that regulating saccharide biosynthesis is a key aspect of plant salt tolerance; however, the underlying molecular mechanisms remain largely unexplored. In this study, we demonstrate that overexpression of a salt-inducible galactinol synthase gene, ZmGolS1, alleviates salt-induced growth inhibition, likely by promoting raffinose synthesis.

View Article and Find Full Text PDF

Genome-wide identification and analysis of autophagy-related (ATG) genes in Lycium ruthenicum Murray reveals their crucial roles in salt stress tolerance.

Plant Sci

December 2024

Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650,  China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Autophagy is a highly conserved intracellular degradation system that is crucial for nutrient recycling, thus regulating plant growth and development as well as in response to various stresses. Halophytic plant Lycium ruthenicum Murray (L. ruthenicum) is considered as a potential model plant for studying the physiological mechanisms of salt stress tolerance in plants.

View Article and Find Full Text PDF

Structural features, physiological functions and digestive properties of phosphorylated corn starch: A comparative study of four phosphorylating agents and two preparation methods.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:

Phosphorylation is an important modification to modulate functional and digestive properties of starches. We systematically investigated starch phosphorylation process parameters by using two different preparation methods (slurry and semi-dry conditions) and four commonly used phosphorylating agents, namely sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), STMP/STPP (99: 1), and sodium phytate (SP). The effects of phosphorylation on physicochemical characteristics, techno-functionalities, digestive properties and structural features of corn starch were analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Seeds are vital for agricultural success, influencing seedling quality and crop yields, making accurate vigor assessment essential for productivity.
  • The study seeks to create a non-destructive method to evaluate maize seed vigor, overcoming the limitations of traditional testing methods, by using a large set of maize inbred lines and advanced technologies like machine vision and hyperspectral imaging.
  • The findings indicate that machine vision is the most effective method for seed vigor detection with about 90% accuracy, and it also uncovers key genetic and metabolic traits linked to seed germination, providing insights into improving seed vigor in maize.
View Article and Find Full Text PDF

Distinct trophic transfer of rare earth elements in adjacent terrestrial and aquatic food webs.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Growing demand and usage of rare earth elements (REEs) lead to significant pollution in wildlife, but trophic transfer of REEs in different food webs has not been well understood. In the present study, bioaccumulation and food web transfer of 16 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and Sc) were investigated in different terrestrial and aquatic species. Median concentrations of REEs in plant, invertebrate, fish, amphibian, reptile, bird, and vole samples were 488-6030, 296-2320, 123-598, 17.

View Article and Find Full Text PDF

Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.

View Article and Find Full Text PDF

Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions.

View Article and Find Full Text PDF

Background: Thrips are among the most damaging pests to cowpeas in Hainan, China. Conventional pesticide application methods often fail to achieve satisfactory control due to the small size and concealed habitats of thrips. This study aimed to enhance the efficacy of pesticides by improving their application techniques.

View Article and Find Full Text PDF

Sediments are key reservoirs for rare bacterial biospheres that provide broad ecological services and resilience in riverine ecosystems. Compared with planktons, there is a lack of knowledge regarding the ecological differences between abundant and rare taxa in benthic bacteria along a large river. Here, we offer comprehensive insights into the spatiotemporal distributions, co-occurrence networks, and assembly processes of three divided categories namely always rare taxa (ART), conditionally rare taxa (CRT), and conditionally rare and abundant taxa (CRAT) in sediments covering a distance of 4,300 km in the Yangtze River.

View Article and Find Full Text PDF

Different percentages of jujube yrup (0%, 3%, 6% and 9%) were incorporated into yak milk and fermented using the fermenting agent . The quality characteristics and antioxidant activity of the resulting yogurt were evaluated at days 0, 7, 14, 21 and 28. The results indicated that the pH and acidity of the yogurt were not significantly influenced by the varying additions of jujube syrup during storage ( > 0.

View Article and Find Full Text PDF

Balancing the Functionality and Biocompatibility of Materials with a Deep-Learning-Based Inverse Design Framework.

Environ Health (Wash)

December 2024

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

The rational design of molecules with the desired functionality presents a significant challenge in chemistry. Moreover, it is worth noting that making chemicals safe and sustainable is crucial to bringing them to the market. To address this, we propose a novel deep learning framework developed explicitly for inverse design of molecules with both functionality and biocompatibility.

View Article and Find Full Text PDF

Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability; however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization.

View Article and Find Full Text PDF

To clarify the characteristics of greenhouse gas emissions (CO, CH, and NO) and the comprehensive greenhouse effect from vegetable fields with different organic planting years, the differences in greenhouse gas emission flux, emission intensity (GHGI), and warming potential (GWP) and their influencing factors among vegetable fields with different organic planting years in Songhuaba, including 10 years, 6 years, 3 years, and conventional planting, were analyzed. The results showed that the CO emissions from organic planting treatments were higher than those from conventional planting, whereas the NO and CH emissions were the opposite. Compared to those from conventional planting, the CO emission fluxes and cumulative emissions from organic cultivation for 10, 6, and 3 years increased by 121.

View Article and Find Full Text PDF

Unraveling the degradation mechanism of multiple pyrethroid insecticides by Pseudomonas aeruginosa and its environmental bioremediation potential.

Environ Int

December 2024

State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Extensive use of pyrethroid insecticides poses significant risks to both ecological ecosystems and human beings. Herein, Pseudomonas aeruginosa PAO1 exhibited exceptional degradation capabilities towards a range of pyrethroid family insecticides including etofenprox, bifenthrin, tetramethrin, D-cypermethrin, allethrin, and permethrin, with a degradation efficiency reaching over 84 % within 36 h (50 mg·L). Strain PAO1 demonstrated effective soil bioremediation by removing etofenprox across different concentrations (25-100 mg·kg), with a degradation efficiency over 77 % within 15 days.

View Article and Find Full Text PDF

Source-specific soil heavy metal risk assessment in arsenic waste mine site of Yunnan: Integrating environmental and biological factors.

J Hazard Mater

December 2024

Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.

This study quantified heavy metal (HM) pollution risks in mining site soils to provide targeted solutions for environmental remediation. Focusing on As waste mine sites in Yunnan, we utilised multiple indices and a positive matrix factorisation model to assess and quantify ecological health risks. Our ecological risk assessment distinguished between environmental and biological factors.

View Article and Find Full Text PDF

Cyclization: A potential effective modification strategy for umami peptides.

Food Chem

December 2024

Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:

Article Synopsis
  • Cyclization can improve the properties of umami peptides, and this study is the first to explore cyclic forms of these peptides.
  • Researchers generated cyclic and linear peptide structures and analyzed their interactions with umami receptors, identifying three promising candidates through docking and clustering.
  • Sensory evaluation showed that cyclization significantly enhanced the umami intensity of one peptide (DPLRGGY), while another (RGEPNND) did not benefit, with molecular analysis revealing structural changes as key factors in these differences.
View Article and Find Full Text PDF

Evaluating the impact of Bt rice straw return on Eisenia fetida: AHP analysis, biomarkers, and Bt protein fate.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China. Electronic address:

A 90-d laboratory experiment was carried out using Bacillus thuringiensis (Bt) rice straws (BTTY and GK775) and non-Bt rice straws (MXZ2, HH1179, and HH38). The objective was to investigate the differences in the effects of Bt and non-Bt rice straws on the earthworm Eisenia fetida. The analytic hierarchy process was applied to assess the risk of returning rice straw to soil on E.

View Article and Find Full Text PDF

Exploring variances in meat quality between Qingyuan partridge chicken and Cobb broiler: Insights from combined multi-omics analysis.

Poult Sci

December 2024

State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China. Electronic address:

Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing.

View Article and Find Full Text PDF

Microbiome and metabolome reveal beneficial effects of baicalin on broiler growth performance and intestinal health.

Poult Sci

December 2024

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. Electronic address:

Normal function and health of the intestinal tract were necessary for the growth and development of broilers. Baicalin (BA) possessed a variety of biological activities. The objective of this study was to examine the impact of BA on the growth performance, intestinal barrier function, intestinal microbiota, and mucosal metabolism in broilers.

View Article and Find Full Text PDF

It is urgent to develop effective antibiotic alternatives for the control of subclinical necrotic enteritis (NE) in chickens after in-feed antibiotics have been banned. The current study investigated the efficacy of drinking water supplemented with essential oils and organic acids mixtures (EOA) on growth performance and intestinal health of broilers challenged with necrotic enteritis (NE). A total of 360 one-day-old Arbor Acres male broilers were randomly divided into 5 treatment groups, including non-challenged control group (T0), challenged NE group (T1), and challenged NE chickens treated with 0.

View Article and Find Full Text PDF

Host microRNAs as regulators of porcine reproductive and respiratory syndrome virus infection.

Virology

December 2024

Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. Electronic address:

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant pathogen in the swine industry. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, have risen to prominence as key regulators of gene expression at the post-transcriptional level. Their significance in regulating virus-host interactions is now widely acknowledged.

View Article and Find Full Text PDF