972 results match your criteria: "China University of Petroleum(Beijing)[Affiliation]"

The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Due to the unique properties of nanoparticles (NPs), their application has been proposed as an innovative and promising enhanced oil recovery (EOR) technique. They enhance oil recovery by improving EOR mechanisms including decreasing interfacial tension (IFT), wettability alteration to water-wet, and preventing asphaltene precipitation. In this study, FeO@Gelatin NPs were synthesized by a convenient and single-step method and then investigated for EOR purposes for the first time.

View Article and Find Full Text PDF

Objective: This study aims to compare the efficacy of mHealth-based exercise interventions with traditional exercise in improving pain intensity, functional disability, and quality of life in patients suffering from knee osteoarthritis (OA).

Method: Randomized controlled trials (RCTs) published from their inception to 23 August 2024 were searched in Cochrane, Embase, Medline, Web of Science. Reviewer pairs independently extracted data and evaluated bias using the Cochrane Risk of Bias tool.

View Article and Find Full Text PDF

Although China's low-permeability and tight oil reservoir utilization and newly proven reserves are growing annually, the overall recovery of such reservoirs is generally low. One of the main factors influencing the low recovery is the effect of intricate dynamic fracture propagations on the remaining oil distribution. Constrained by the evolution of an in situ stress field and the accumulation of fluid injection volumes, the growth of dynamic fractures allows a production profile of water breakthrough.

View Article and Find Full Text PDF

We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing experiments on a well-established PISA system. Two categories of modular addition strategies, , the multistep addition strategy and the constant rate addition strategy, were investigated.

View Article and Find Full Text PDF

High-precise determination of the drought and cold resistance of forage seeds using terahertz time-domain spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Inner Mongolia Grassland Station, Huhhot, Inner Mongolia 010020, China. Electronic address:

Owing to the complicated geographical locations and climates, cultivation and selection of forage seeds are challenging. For the first time, we qualitatively distinguished the drought and cold resistance of forage seeds with the time domain and refractive index spectra using terahertz (THz) time-domain spectroscopy. A multilayer structure propagation (MSP) model was developed based on the effective medium and light transport theory to reveal the underlying biological mechanisms of drought and cold resistance of forage seeds.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Understanding the impact of surface copper valence states on the distribution of electrochemical carbon dioxide products is critical. Herein, CuO@Cu2O with a Cu2+/Cu+ interface was fabricated using wet chemical etching approach. The hollow shape offered a large region for gas adsorption, while the interfacial mixed chemical state of Cu2+/Cu+ with tunable control ratio raised the local density of CHO* and accelerated the carbon-carbon coupling reaction.

View Article and Find Full Text PDF

Degradation of 15 halogenated hydrocarbons by 5 unactivated chemical oxidation oxidants.

Environ Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China.

Oxidants used in the ISCO technology usually require activation by activators to degrade contaminants. However, this study investigated degradation of 15 typical halogenated hydrocarbons by five common ISCO oxidants (PS, PMS, HO, KMnO, SPC) without activation in both pure water and real groundwater. Unactivated PS could degrade 14 halogenated hydrocarbons, excluding tetrachloromethane.

View Article and Find Full Text PDF

Tailoring Metal-Organic Frameworks for One-Step Separation of Alkane/Alkene/Alkyne Mixtures.

Chem Asian J

January 2025

Shenzhen Polytechnic University, Hoffmann Institute of Advanced Materials, 7098 Liuxian Blvd., 518055, Shenzhen, CHINA.

The purification of polymer-grade (>99.9%) olefins (mostly C2 and C3) represents a significant yet challenging process in petrochemical industry. The commonly employed method for hydrocarbon separation involves heat-driven distillations.

View Article and Find Full Text PDF

Molecular composition of hydroxyl radical-resistant organics in municipal solid waste leachate.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:

Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.

View Article and Find Full Text PDF

Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.

View Article and Find Full Text PDF

Phase regulation of Ni(OH) nanosheets induced by W doping as self-supporting electrodes for boosted water electrolysis.

J Colloid Interface Sci

January 2025

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping 102249, China. Electronic address:

Developing high-performance and low-cost electrodes for hydrogen and oxygen evolution reactions (HER and OER, respectively) represents a pivotal challenge in the field of water electrolysis. Herein, W doped NiFe LDH nanosheets (NiFe-W/NF) were immobilized on nickel foam (NF) through one-step corrosion engineering, which induced the coexistence of α-Ni(OH) and β-Ni(OH). The doping of large atomic radius W influenced the growth of crystal planes of Ni(OH), promoting the formation of α-Ni(OH), which results in large layer spaces and neatly arranged nanosheets structure.

View Article and Find Full Text PDF

One of the key points in the construction of smart oil and gas fields is the effective utilization of data. Virtual Flow Metering (VFM), as one of the representative research directions for digital transformation, can obtain real-time production from oil and gas wells without the need for additional field instrumentation, utilizing pressure and temperature data obtained from sensors and employing multiphase flow mechanism models. The data-driven VFM demonstrates a commendable capacity in capturing the nonlinear relationship between sensor data and flow rates, while circumventing the necessity for rigorous analysis of the underlying mechanistic processes.

View Article and Find Full Text PDF

Carbon neutrality has gained considerable attention globally, and the impact of environmental policy on businesses has been extensively studied. However, the mechanism through which environmental policy affects production efficiency within the enterprise remains unclear. The objectives of this paper are: 1.

View Article and Find Full Text PDF
Article Synopsis
  • Electrochemical sensing is essential for real-time monitoring of neurotransmitters and neuromodulators, helping to understand various physiological and psychological processes in the central nervous system.
  • Advanced biosensor technologies like voltammetry, amperometry, potentiometry, FET, and OECT are highlighted for their key roles in improving the detection capabilities from single cells to whole brains.
  • The review also discusses the strengths and weaknesses of these techniques while addressing current challenges and future directions for enhancing electrochemical biosensing methods.
View Article and Find Full Text PDF

Reducing transition costs towards carbon neutrality of China's coal power plants.

Nat Commun

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, China.

Article Synopsis
  • The study examines various pathways for transitioning coal power that can achieve the same carbon emission reduction targets, focusing on costs associated with different mitigation technologies.
  • By using a dynamic optimization model for over 4,200 coal plants in China, the research finds that plants can retrofit multiple technologies, retiring at lower costs while enhancing grid stability.
  • Optimizing these transition pathways could save China over $700 billion or increase emissions reductions substantially without extra expenses, aiding in a cost-effective phase-out of coal and supporting carbon neutrality goals.
View Article and Find Full Text PDF

Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.

View Article and Find Full Text PDF

Identifying human activities causing water pollution based on microbial community sequencing and source classifier machine learning.

Environ Int

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China. Electronic address:

Identifying and differentiating human activities is crucial for effectively preventing the threats posed by environmental pollution to aquatic ecosystems and human health. Machine learning (ML) is a powerful analytical tool for tracking human impacts on river ecosystems based on high-through datasets. This study employed an ML framework and 16S rRNA sequencing data to reveal microbial dynamics and trace human activities across China.

View Article and Find Full Text PDF

Experimental study on ultrasonic reduction of irreducible water saturation in low permeability reservoir.

Sci Rep

December 2024

Puyang Key Laboratory of Sound Field Assisted Oil and Gas Development, Puyang, 457000, China.

Irreducible water saturation is an important factor affecting the development effect of low permeability reservoir. Using the self-developed ultrasonic generator, kerosene was used as simulated oil, the natural low-permeability siltstone cores with different physical properties in Zhongyuan Oilfield were selected for indoor oil displacement experiment, and the effect of ultrasonic action on the saturation of irreducible water in low-permeability reservoirs was evaluated. It was found that ultrasound can further reduce the saturation of irreducible water on the basis of oil flooding.

View Article and Find Full Text PDF
Article Synopsis
  • Horizontal well hydraulic fracturing technology has greatly improved shale reservoir productivity but lacks understanding of fracture expansion and fluid movement in real-world conditions.
  • A dynamic geomechanical (DG) model is developed to simulate hydraulic fracturing operations using field-mimicking procedures and calibrated to field data for better accuracy.
  • The DG model allows for detailed analysis of reservoir dynamics, effectively mapping fluid injection effects, fracture propagation, and permeability changes following fracturing operations.
View Article and Find Full Text PDF

Phase boundary is highly recognized for its capability in engineering various physical properties of ferroelectrics. Here, field-induced polarization rotation is reported in a high-performance (K, Na)NbO-based ferroelectric system at the rhombohedral-tetragonal phase boundary. First, the lattice structure is examined from both macroscopic and local scales, implementing Rietveld refinement and pair distribution function analysis, respectively.

View Article and Find Full Text PDF

Switching CO-to-Acetate Electroreduction on Cu Atomic Ensembles.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

The electrocatalytic reaction pathway is highly dependent on the intrinsic structure of the catalyst. CO/CO electroreduction has recently emerged as a potential approach for obtaining C products, but it is challenging to achieve high selectivity for a single C product. Herein, we develop a Cu atomic ensemble that satisfies the appropriate site distance and coordination environment required for electrocatalytic CO-to-acetate conversion, which shows outstanding overall performance with an acetate Faradaic efficiency of 70.

View Article and Find Full Text PDF

Preparation of Hot-Pressed Wheat Straw Board by Self-Adhesive Process: Effects of Raw Material Sizes and Acid/Alkali Pretreatment.

Materials (Basel)

November 2024

Guangdong Provincial Engineering & Technology Center for Corrosion and Safety in Petrochemical Industry, School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.

The development of wheat straw boards utilizing intrinsic bonding mechanisms not only facilitates the high-value utilization of agricultural solid waste but also diminishes the reliance on synthetic adhesives. In this study, using wheat straw as the primary substrate, we investigated the effects of mechanical smashing combined with pretreatment using inorganic acids or alkalis on the properties of hot-pressed boards, as well as the relationship between the properties of hot-pressed boards and the physical properties and chemical composition of wheat straw raw materials. These selective pretreatments effectively degraded lignin, hemicellulose, and other components, thereby promoting fiber reorientation and resulting in a denser microstructure with improved self-bonding capabilities.

View Article and Find Full Text PDF