25,382 results match your criteria: "China University of Mining & TechnologyBeijing[Affiliation]"

Study of the spatial strength distribution patterns and microstructure characteristics of ultra-fine tailings cemented paste backfill.

Sci Rep

January 2025

State Key Laboratory of High-Efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing, 100083, China.

In this study, the spatial distribution of the mechanical strength of ultra-fine tailings cemented paste backfill (UCPB) in underground stopes was examined, and the micro-mechanism responsible for differences in spatial strength performance via changes in particle deposition was elucidated. To better understand this phenomenon, we constructed a similar backfilling stope model using the ultra-fine tailings of a gold mine. We manufactured specimens at different spatial locations and conducted a novel series of tests, including uniaxial compressive strength, shear strength, and conventional triaxial tests, to obtain the strength parameters in different spatial distributions.

View Article and Find Full Text PDF

This study aims to mine and analyze adverse events (AEs) of Vedolizumab based on the FAERS database to better understand its safety and potential risks in the real world. Data from the second quarter of 2014 to the third quarter of 2023 were collected, employing various signal mining methods such as Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayesian Geometric Mean (EBGM). The study gathered 14,753,012 reports of AEs, of which 46,726 were related to Vedolizumab.

View Article and Find Full Text PDF
Article Synopsis
  • A series of fire experiments were conducted using a 1/10 scale model tunnel with a lateral open shaft to study the effects of a mechanical exhaust system on temperature changes during a fire.
  • The research revealed important correlations between smoke extraction rates and ceiling temperatures, with variations observed in temperature distribution near the fire source based on induced longitudinal velocity.
  • Findings led to the development of a modified model for maximum excess temperature and a simplified model for ceiling temperature decay, which are significant for improving fire safety measures in mountain tunnels.
View Article and Find Full Text PDF

Fast and reliable identification of bacteria directly in clinical samples is a critical factor in clinical microbiological diagnostics. Current approaches require time-consuming bacterial isolation and enrichment procedures, delaying stratified treatment. Here, we describe a biomarker-based strategy that utilises bacterial small molecular metabolites and lipids for direct detection of bacteria in complex samples using mass spectrometry (MS).

View Article and Find Full Text PDF

The fully bio-based bilayered flame retardant treatment for paper via natural bio-materials.

Front Chem

December 2024

School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.

In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.

View Article and Find Full Text PDF

Cancer research has been significantly advanced by the integration of transcriptomic data through high-throughput sequencing technologies like RNA sequencing (RNA-seq). This paper reviews the transformative impact of transcriptomics on understanding cancer biology, focusing on the use of extensive datasets such as The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). While transcriptomic data provides crucial insights into gene expression patterns and disease mechanisms, the analysis is fraught with technical and biological biases.

View Article and Find Full Text PDF
Article Synopsis
  • Obstructive nephropathy is a major cause of kidney injury in infants and children, with transcription-related factors (TRFs) playing a significant role in kidney diseases.
  • The study analyzed data from prior research to identify dysregulated TRFs in pediatric patients and mice with unilateral ureteral obstruction (UUO), revealing 140 human TRFs and 160 murine TRFs, with a focus on inflammatory pathways.
  • Notably, 16 key TRFs were identified as potentially important in obstructive nephropathy, including three which had not been extensively studied before: prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP).
View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for creating a CuO/FeO composite with a heterostructure, which enhances charge transfer due to an internal electric field at the interface.
  • This internal electric field induces distinct electron-rich and electron-deficient zones, triggering effective reactions with peroxymonosulfate (PMS) that lead to the production of reactive oxygen species.
  • The CuO/FeO composite system shows strong potential for wastewater treatment by efficiently mineralizing organic pollutants into non-toxic by-products, offering new insights for future research in this field.
View Article and Find Full Text PDF

Myocardial infarction (MI) is a major cause of death worldwide. Exercise rehabilitation (ER) is a powerful tool to improve life quality and prognosis of MI patients. Herein, we developed an untargeted metabolomics combined with lipidomics method to qualitatively and quantitatively detect metabolites in plasma.

View Article and Find Full Text PDF

Genome mining of nonenzymatic ortho-quinone methide-based pseudonatural products from ascidian-derived fungus Diaporthe sp.SYSU-MS4722.

Bioorg Chem

January 2025

School of Marine Sciences, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China. Electronic address:

Article Synopsis
  • Ortho-quinone methides (o-QMs) are reactive intermediates formed from clavatol that lead to pseudonatural products (PNPs) in fungi, which can have significant biological activities.
  • Genome mining identified a clavatol biosynthetic gene cluster (BGC) in the Diaporthe sp. SYSU-MS4722 fungus, allowing for the heterologous expression of key genes in Aspergillus oryzae NSAR1, leading to the discovery of 13 new clavatol-based PNPs.
  • Structural analysis using various spectroscopic techniques confirmed the identities of these compounds, revealing several with notable anti-fibrotic activity.
View Article and Find Full Text PDF

Rapeseed meal (RSM), a protein-rich byproduct, holds potential as a high-quality animal feed, but nitrile compounds derived from glucosinolates (GSLs) in RSM pose a toxicity risk. Nitrilases, enzymes that hydrolyze toxic nitriles to carboxylic acids, offer a potential solution for detoxification. However, the low thermal stability of nitrilases restricts their industrial applicability.

View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

Elevated CO (eCO) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat ( L) was planted in field in the eCO (550 µmol mol) and ambient CO (aCO, 415 µmol mol) environments.

View Article and Find Full Text PDF

Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.

View Article and Find Full Text PDF

Underground Reservoirs Regulate the Composition and Metabolism of Microbial Community in Coal Mine Water.

ACS Omega

December 2024

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China.

Article Synopsis
  • Underground reservoirs in coal mines are effective in purifying mine water, significantly reducing chemical oxygen demand (COD) and regulating water chemistry.
  • The study analyzed influent and effluent samples from seven mining areas, noting that improvements in water quality can alter microbial community composition and metabolic activity.
  • Effluent samples showed higher concentrations of specific metabolites linked to various metabolic pathways, revealing important connections between water treatment processes and changes in microbial ecology.
View Article and Find Full Text PDF

With the continuous exploitation of global mineral resources, backfill technology for gob areas has become a crucial aspect of mine safety and sustainable development. As a primary method of gob area backfill, slurry backfill directly relates its flow properties and filling height to the efficiency and safety of mine extraction. To enhance the flow properties of the slurry and increase its filling height, a research study on the flow and deposition characteristics of a gas-containing filling slurry was conducted using a combination of theoretical analysis, laboratory experiments, and field tests.

View Article and Find Full Text PDF

A real-world pharmacovigilance study of Sorafenib based on the FDA Adverse Event Reporting System.

Front Pharmacol

December 2024

Department of Gastroenterology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

Article Synopsis
  • The study aimed to monitor adverse events (AEs) linked to Sorafenib, a drug used for treating liver, kidney, and thyroid cancers, focusing on enhancing patient safety.
  • Reports from the FDA Adverse Event Reporting System (FAERS) from 2004 to 2024 were analyzed, revealing a total of 18,624 patients and 82,857 AEs across 26 organ systems.
  • The findings included both expected AEs, like diarrhea and fatigue, and unexpected ones, such as gait inability and hyperkeratosis, highlighting the need for ongoing monitoring to identify new reactions and improve patient care.
View Article and Find Full Text PDF

Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.

View Article and Find Full Text PDF

Healthy ageing plays an important role in ageing societies in many countries, and centenarians are a sign of longevity. Longevity and its determinants have become issues of global concern and also a focus of research. Although many disciplines have conducted out a series of studies on longevity phenomena, few studies have systematically considered the impact of geographical environmental factors.

View Article and Find Full Text PDF

The widespread use of copper (Cu) in industrial and agricultural settings leads to the accumulation of excess Cu within aquatic ecosystems, posing a threat to organism health. Microalgal bioremediation has emerged as a popular and promising solution to mitigate the risks. Nevertheless, the genetic underpinnings and engineering tactics involved in heavy metal bioremediation by microalgae remain inadequately elucidated.

View Article and Find Full Text PDF

Background: Endothelial-to-mesenchymal transition (EndMT) has been identified as a key factor to the initiation and progression of the pathogenesis of atherosclerosis (AS). Salvianic acid A (SAAS) is the primary water-soluble bioactive ingredient found in Salvia miltiorrhiza, is renowned for its therapeutic effects on cardiovascular diseases. However, the efficacy and mechanisms of SAAS in treating EndMT-induced AS remain underexplored.

View Article and Find Full Text PDF

Based on the 5615 working face of Beisu Coal Mine, a virtual prototype of the shearer cable drag system was developed using the MG2×70/325-BWD electric traction shearer as the carrier, in combination with CERO and ADAMS software. The shearer cable was equivalently modeled using the discrete rigid body method to study the dynamic characteristics of the drag system. This research provides a foundation for the design and optimization of both the cable and cable clamps.

View Article and Find Full Text PDF

Data mining of adverse drug event signals with Nirmatrelvir/Ritonavir from FAERS.

PLoS One

December 2024

The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Nirmatrelvir/Ritonavir, acting as an effective agent against COVID-19, has achieved considerable results in clinical studies in terms of drug efficacy. However, there is little research about its medication safety. Based on the FDA adverse event reporting system (FAERS) database, this study aims to mine the adverse reaction signals of the latest major recommended drug Nirmatrelvir/Ritonavir for the antiviral treatment of COVID-19, so as to provide a basis for safe and rational drug use.

View Article and Find Full Text PDF

Rational utilization of natural resources is crucial in arid and semi-arid areas due to their vulnerable ecosystems and low resource resilience. Achieving a balance between grassland production and livestock grazing, known as the pasture-livestock balance, is essential for the sustainable development of grassland resources on the Mongolian Plateau (MP). This study focuses on the grassland regions of 8 provinces in eastern Mongolia (MNG) and 7 leagues in Inner Mongolia (IMNG), China, during the period from 2018 to 2022.

View Article and Find Full Text PDF