3,336,951 results match your criteria: "China; Jiangsu Provincial Technology Engineering Research Center of TCM Health Preservation[Affiliation]"

Antiproliferative activity of selenium-enriched coumarin derivatives on the SK-N-SH neuroblastoma cell line: Mechanistic insights.

Eur J Med Chem

January 2025

Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing, 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing, 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou, 311113, China. Electronic address:

Thirty selenium-containing coumarin derivatives were synthesized and evaluated for inhibitory activity against 17 malignant tumor cell lines. Among these, compound 11i demonstrated the most potent inhibition of neuroblastoma SK-N-SH cells, with an IC of 2.5 ± 0.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is a pivotal enzyme in nerve conduction, controlling its activity with its inhibitor (AChEI) is crucial for the treatment of Alzheimer's disease (AD). However, current AChEIs are associated with considerable adverse effects. Previous work has identified 2α,3β,19α,23-tetrahydroxy-12-ene-28-oic acid (RLMS) as a promising natural AChEI.

View Article and Find Full Text PDF

Heteroatom sulfur-doping in single-atom FeNC catalysts for durable oxygen reduction performance in zinc-air batteries.

J Colloid Interface Sci

January 2025

Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:

Heteroatom doping into the transition metal-based catalysts is an effective strategy to improve the oxygen reduction reaction (ORR) kinetics. Herein, we proposed a one-step, soft template assisted, and green method for the synthesis of Sulfur (S) doped single atom FeNC catalyst. XAFS demonstrated that the Fe active sites in the FeNSC were more likely to possess the Fe-N configuration.

View Article and Find Full Text PDF

Sea urchin-like covalent organic frameworks/TiO heterostructure for enhanced photocatalytic CO conversion.

J Colloid Interface Sci

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytic reduction of CO to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) derived materials are extensively utilized in wastewater treatment owing to their remarkable catalytic efficacy and durability. This study exploited iron-cerium-based bimetallic metal-organic framework (FeCe-MOF) as a sacrificial template, which was subsequently calcined at 700 °C to produce an iron-cerium-based bimetallic carbon nanospheres (FeCe@C). The FeCe@C has active sites of bimetallic Fe and Ce derivatives, demonstrating exceptional activation efficiency for persulfate, resulting in approximately 98.

View Article and Find Full Text PDF

Preventing bacterial infection and accelerating wound closure are critical for wound healing. Herein, a novel multifunctional polyvinyl alcohol-polyvinylpyrrolidone (PVA-PVP) microneedle (MN) patch embedded with enzyme-like activity (CoFe)(S) (CFS) nanoparticles and metal ions (Co and Fe) was systematically synthesized for the management of bacteria-infected wounds. CFS regulated redox homeostasis and achieved bacterial eradication while concomitantly alleviating oxidative damage.

View Article and Find Full Text PDF

Exosomes derived from colorectal cancer cells suppress B-cell mediated anti-tumor immunity.

Int Immunopharmacol

January 2025

Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040 China. Electronic address:

Exosomes derived from cancer cells significantly influence the tumor immune microenvironment and can limit the efficacy of immunotherapy. However, the impact of exosomes on B cell-dependent anti-tumor immunity remains poorly understood. Here, we demonstrate that exosomes secreted by MC38 (MC38-Exos), a murine colorectal cancer cell line, induce B cells to adopt immunosuppressive phenotypes.

View Article and Find Full Text PDF

Investigation of the effects and mechanism of Total Glycosides of paeony against Radiation-Induced brain injury through network Pharmacology, molecular docking and experimental Verification.

Int Immunopharmacol

January 2025

School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China. Electronic address:

Background: Total glucosides of paeony (TGP), derived from the dried root of Paeonia, is a popular treatment for immune diseases. Radiation induced brain injury (RBI) is a common side effect of brain radiation therapy, but the efficacy of TGP in treating RBI remains uncertain.

Purpose: To evaluate the protective effects of TGP against RBI and elucidate its underlying mechanisms using pharmacological network analysis, molecular docking, and experimental validation.

View Article and Find Full Text PDF

Background: Fine particulate matter (PM2.5) is a global environmental problem that threatens public health because it can induce ferroptosis and cause lung injury. Hesperetin (Hes), a natural compound widely present in fruits and vegetables, can activate nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting powerful antioxidant effects.

View Article and Find Full Text PDF

MiR-186-5p carried by M2 macrophage-derived exosomes downregulates TRPP2 expression in airway smooth muscle to alleviate asthma progression.

Int Immunopharmacol

January 2025

Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China. Electronic address:

Bronchial asthma (asthma) is a chronic inflammatory disease of the airways that remains an unresolved problem. Reportedly M2 macrophages and exosomes play a role in inflammation, including asthma. We investigated the roles of M2 macrophage-derived exosomes (M2-Exos) effect in asthmatic progression by using ovalbumin (OVA) induced asthmatic mice model.

View Article and Find Full Text PDF

Background: With the escalating use of digital devices, blue light (BL) exposure has emerged as a critical concern due to its potential to cause ocular damage. This study explores the protective effects of notoginsenoside R1 (NR1), a bioactive compound from Panax notoginseng (Burkill) F.H.

View Article and Find Full Text PDF

Zyxin-a novel detrimental target, is inhibited by Saikosaponin A during allergic asthma.

Phytomedicine

January 2025

School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, China. Electronic address:

Background: Allergic asthma is a heterogeneous disease involving numerous inflammatory cells. Mast cell (MC) plays a key role during allergic asthma. Saikosaponin A (SSA) inhibits MC activation and ameliorates allergic asthma, however, its underlying mechanism remains unclear.

View Article and Find Full Text PDF

Bushen Jiedu formula alleviates colorectal cancer progression through reducing lncRPPH1 in tumor-derived extracellular vesicles.

Phytomedicine

January 2025

Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Background: The Bushen Jiedu Formula (BSJDF) is a traditional and effective chemical prescription of traditional Chinese medicine (TCM) administered due to its anti-cancer properties, particularly in colorectal cancer (CRC).

Purpose: This study proposes to explore the therapeutic benefits of BSJDF against metastasis in CRC and unravel its regulatory mechanisms related to the tumor microenvironment.

Study Design/methods: The combination of mass spectrometry and network pharmacology was used to analyze the involvement of BSJDF in anti-tumor progression.

View Article and Find Full Text PDF

Screening effective-component compatibility from Jinshui Chenfei formula for silicosis treatment by serum-pharmacochemistry and feedback system control.

Phytomedicine

January 2025

Co-construction collaborative innovation center for Chinese medicine and respiratory diseases by Henan & education ministry of China, Henan University of Chinese Medicine, Zhengzhou, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China. Electronic address:

Background: The unclear chemical composition and mechanisms of action pose challenges for new drug development and quality control of traditional Chinese medicine (TCM) formulas. To address this, the concept of effective-component compatibility (ECC) was proposed to represent drug combination with equivalent efficacy to TCM formulas, along with clear composition and dosage. However, previous strategies for screening ECC have often overlooked the synergistic effects of its components.

View Article and Find Full Text PDF

Background: Renal tubular injury was a significant pathological change of diabetic kidney disease (DKD), and the amelioration of renal tubular injury through mitochondrial function was an important treatment strategy of DKD. Our previous study had revealed that Jujuboside A (Ju A), the main active substance isolated from Semen Ziziphi Spinosae (SZS), could restore renal function of diabetic mice. However, its protective mechanism against DKD remains unclear.

View Article and Find Full Text PDF

The effect of sub-boiling temperatures on mass transfer from former manufactured gas plant residuals.

J Contam Hydrol

January 2025

BCEG Environmental Remediation Co., Ltd., Beijing 100015, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.

The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity.

View Article and Find Full Text PDF

Artificial neural networks' estimations of lower-limb kinetics in sidestepping: Comparison of full-body vs. lower-body landmark sets.

J Biomech

January 2025

School of Sport Science, Beijing Sport University, Beijing, China; Key Laboratory of Exercise Rehabilitation Science of the Ministry of Education, Beijing Sport University, Beijing, China. Electronic address:

Artificial neural networks (ANNs) offers potential for obtaining kinetics in non-laboratory. This study compared the estimation performance for ground reaction forces (GRF) and lower-limb joint moments during sidestepping between ANNs fed with full-body and lower-body landmarks. 71 male college soccer athletes executed sidestepping while three-dimensional kinematics and kinetics were collected to calculate joint moments by inverse dynamic.

View Article and Find Full Text PDF

Biological VFAs production from proteinaceous wastewater varied with protein type: The role of protein exposed enzyme cleavage sites and hydrolysates biotransformation capacity.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China. Electronic address:

Proteinaceous wastewater contains various proteins, which can be valorized to biobased volatile fatty acids (VFAs), important substrates for the synthesis of biodegradable plastics, biodiesel, bioelectricity, etc., but the influence of protein type on VFAs has never been documented. It was found that among the five proteinaceous wastewater proteins investigated, ovalbumin and casein produced the most and the least VFAs, respectively.

View Article and Find Full Text PDF

Overcoming Fe(III) precipitation barrier in acid mine drainage via a visible light-assisted photo-electrochemical system.

Water Res

January 2025

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China. Electronic address:

Acid mine drainage (AMD) is characterized by high concentrations of Fe(II) and Fe(III), which can be harnessed for the in-situ formation of schwertmannite, enabling the efficient immobilization of toxic heavy metals. However, existing biological and chemical methods for schwertmannite synthesis face significant challenges, including low Fe(II) oxidation rates and particularly limited Fe(III) precipitation efficiency in acidic environments. In this study, we develop a visible light-assisted photo-electrochemical (PEC) system that effectively overcomes these barriers.

View Article and Find Full Text PDF

The accumulation of phosphorus (P) in soil profiles of intensive cropland and the losses caused by runoff and leaching have been widely concerned. However, the loss of soil P due to shallow groundwater table (SGT) fluctuations driven by seasonal changes is often neglected, and the migration and transformation mechanisms of soil P are still unclear. On the basis of the long-term monitoring of cropland soil P accumulation and SGT fluctuations around Erhai Lake, the characteristics of soil P loss driven by SGT fluctuations and the corresponding mechanisms were investigated through a 260-day microcosm experiment.

View Article and Find Full Text PDF

Heat stress enhances the expression of METTL3 to mediate N6-methyladenosine modification of SOS2 and NLRP3 inflammasome activation in boar Sertoli cells.

J Hazard Mater

January 2025

Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China. Electronic address:

Heat stress negatively affects pig production by disrupting the immune homeostasis of Sertoli cells (SCs), which compromises sperm quality, culminating in male infertility. Herein, we aimed to study the mechanism by which the NLRP3 inflammasome is activated by heat stress through N6-methyladenosine (mA) modification regulation in SCs. Initially, it was found that heat stress (44°C, 30 min) markedly activated ERK1/2 signaling, which subsequently promoted NLRP3 inflammasome activation and inflammatory cytokine release from SCs.

View Article and Find Full Text PDF

Laboratory measurement and machine learning-based analysis of driving factors for brake wear particle emissions from light-duty electric vehicles and heavy-duty vehicles.

J Hazard Mater

January 2025

Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.

This study investigates brake wear particle (BWP) emissions from light-duty electric vehicles (EVs) and heavy-duty vehicles (HDVs) using a self-developed whole-vehicle testing system and a modified brake dynamometer. The results show that regenerative braking significantly reduces emissions: weak and strong regenerative braking modes reduce brake wear PM by 75 % and 87 %, and brake wear PM by 90 % and 95 %, respectively. HDVs with drum brakes produce lower emissions and higher PM/PM ratios than those with disc brakes.

View Article and Find Full Text PDF

Urban soils immobilize harmful microbes and antibiotic resistance genes.

J Hazard Mater

January 2025

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:

Exposure to harmful microbiomes and antibiotic resistance genes (ARGs) can negatively affect human health. However, the contribution of vegetation and soils to the airborne microbiota transferred indoors (AMTI) remains unclear. We used our newly-developed airborne microbial sampler (VenTube) to collect AMTI samples from 72 neighborhoods in Shanghai.

View Article and Find Full Text PDF

Electroactive biofilms alter the EPS structure and metabolic pathways to sense potential and tetracycline.

J Hazard Mater

January 2025

Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China. Electronic address:

The extracellular polymeric substances (EPS) secretion decides the efficiency of microbial electron transfer and the resistance to toxic challenges. Electrode potential is a critical factor affecting both the rate and direction of electron transfer. However, the mechanism through which potential regulates EPS structure and toxic substance removal remains unclear.

View Article and Find Full Text PDF

Creating a multifunctional degrader for co-mineralization of p-nitrophenol and 1,2-dichloroethane and its application in wastewater bioremediation.

J Hazard Mater

January 2025

Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:

Because the interactions among contaminants may lead to enhanced toxicity, combined pollution caused by the co-presence of multiple contaminants has increasingly gained public concern. p-Nitrophenol (PNP) and 1,2-dichloroethane (1,2-DCA) are frequently co-detected in groundwater. To completely eliminate PNP, 1,2-DCA and intermediates from polluted sites, in this study, a novel degrader KTU-PDG was created by functional assembly of PNP and 1,2-DCA biodegradation pathways in a robust chassis Pseudomonas putida KT2440.

View Article and Find Full Text PDF