5 results match your criteria: "Centre of Photochemistry[Affiliation]"

Interaction of Spin-Labeled Lipid Membranes with Transition Metal Ions.

J Phys Chem B

October 2015

National Biomedical Center for Advanced ESR Technology (ACERT), Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States.

The large values of spin relaxation enhancement (RE) for PC spin-labels in the phospholipid membrane induced by paramagnetic metal salts dissolved in the aqueous phase can be explained by Heisenberg spin exchange due to conformational fluctuations of the nitroxide group as a result of membrane fluidity, flexibility of lipid chains, and, possibly, amphiphilic nature of the nitroxide label. Whether the magnetic interaction occurs predominantly via Heisenberg spin exchange (Ni) or by the dipole-dipole (Gd) mechanism, it is essential for the paramagnetic ion to get into close proximity to the nitroxide moiety for efficient RE. For different salts of Ni the RE in phosphatidylcholine membranes follows the anionic Hofmeister series and reflects anion adsorption followed by anion-driven attraction of paramagnetic cations on the choline groups.

View Article and Find Full Text PDF

For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region.

View Article and Find Full Text PDF

Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods for determining T(1) of nitroxyl spin labels.

View Article and Find Full Text PDF

A recent survey of nonlinear continuous-wave (CW) EPR methods revealed that the first-harmonic absorption EPR signal, detected 90 degrees out of phase with respect to the Zeeman modulation (V(1)(')-EPR), is the most appropriate for determining spin-lattice relaxation enhancements of spin labels (V. A. Livshits, T.

View Article and Find Full Text PDF

Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.

J Magn Reson

September 1998

Centre of Photochemistry, Russian Academy of Sciences, Moscow, 117427, Russian Federation.

The dependence on spin-lattice (T1) relaxation of the first-harmonic absorption EPR signal (V'1) detected in phase quadrature with the Zeeman modulation has been investigated both theoretically and experimentally for nitroxide spin labels. Spectral simulations were performed by iterative solution of the Bloch equations that contained explicitly both the modulation and microwave magnetic fields (T. Páli, V.

View Article and Find Full Text PDF