154 results match your criteria: "Centre of Advanced Research in Bionanoconjugates and Biopolymers[Affiliation]"

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

Aero-TiO three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline.

Sci Rep

December 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.

One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.

View Article and Find Full Text PDF

From Fossil to Bio-Based AESO-TiO Microcomposite for Engineering Applications.

Polymers (Basel)

November 2024

Department of Electroactive Polymers and Plasmochemistry, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania.

Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different applications. Herein, the authors propose a simplified and green synthesis pathway for a thermally curable, acrylated and epoxidized soybean oil matrix formulation containing only epoxidized soybean oil, acrylic acid, a reactive diluent (5%) and just 0.

View Article and Find Full Text PDF

Biogenic Synthesis of Silver Nanoparticles Mediated by and Their Biological Evaluation.

Life (Basel)

September 2024

Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania.

In the present study, two berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated.

View Article and Find Full Text PDF

Enhancing Flucytosine Anticandidal Activity Using PEGylated Squalene Nanocarrier.

ChemMedChem

January 2025

Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni", Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, Iasi, 700487, Romania.

There is an emerging necessity for improved therapies against Candida-related infections, with significant implications for global healthcare. Current antifungal agents, limited in number, target specific pathways, but resistance remains a concern. Flucytosine (5FC) exhibits antifungal activity, particularly against Candida.

View Article and Find Full Text PDF

Although deterioration of silicone maxillofacial prostheses is severely accentuated in smoking patients, the phenomenon has not been systematically studied. To address a gap in the literature concerning the stability of maxillofacial prostheses during service, in this contribution, the effect of cigarette smoke on the aspect and physical properties of M511 silicone elastomer was evaluated. The aspect, surface, and overall properties of the silicone material, pigmented or not, were followed by AFM, color measurements, FTIR, water contact angle measurements, TGA-DTG and DSC, hardness and compression stress-strain measurements.

View Article and Find Full Text PDF

Eying the increasing impact of hyaluronic acid (HA) and its multifaceted applications, this study employs a non-toxic, one-pot strategy to develop injectable, self-healing hydrogels for biomedical applications. Phytic acid (PA), a plant-derived organic acid with high biocompatibility and numerous hydroxyl groups, can act as a cross-linking agent to form hydrogen-bonded networks with the HA chains. The study examined the optimal mass ratio of HA to PA to achieve superior hydrogel performance.

View Article and Find Full Text PDF

Methotrexate (MTX) is a folic acid antagonist routinely used in cancer treatment, characterized by poor water solubility and low skin permeability. These issues could be mitigated by using drug delivery systems, such as functionalized gold nanoparticles (AuNPs), known for their versatility and unique properties. This study aimed to develop multi-shell AuNPs functionalized with MTX for the improvement of MTX antitumoral, antioxidant, and biocompatibility features.

View Article and Find Full Text PDF

, a highly invasive species, contains valuable compounds in different plant parts, indicating great practical potential. This paper proposes the use of non-polar (-hexane) and polar (ethanol) solvents for the extraction of antioxidant compounds from (family Simaroubaceae) leaves in a sequential two-step process. Fresh and dried leaves were examined for their microstructure by scanning electron microscopy, and for color changes in the CIELAB color space co-ordinates.

View Article and Find Full Text PDF

New Chitosan-Based Co-Delivery Nanosystem for Diabetes Mellitus Therapy.

Polymers (Basel)

June 2024

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 Universitaty Street, 700115 Iași, Romania.

Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders, with a major involvement of oxidative stress in its onset and progression. Pioglitazone (Pio) is an antidiabetic drug that mainly works by reducing insulin resistance, while curcumin (Cur) is a powerful antioxidant with an important hypoglycemic effect. Both drugs are associated with several drawbacks, such as reduced bioavailability and a short half-life time (Pio), as well as instability and poor water solubility (Cur), which limit their therapeutic use.

View Article and Find Full Text PDF

, an invasive plant species, exhibits pharmacological properties, but also some allergic effects on humans. This study aimed to evaluate the potential toxicity of leaves, using a complex approach towards different organisms. The ecotoxic impact of a crude extract was investigated on seeds germination and brine shrimp lethality.

View Article and Find Full Text PDF

Quantifying and Decoupling Molecular Interactions of Ionic Liquids with Gold Electrodes.

Langmuir

June 2024

School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

This work combined gold colloid probe atomic force microscopy (AFM) with a quartz crystal microbalance (QCM) to accurately quantify the molecular interactions of fluorine-free phosphonium-based ionic liquids (ILs) with gold electrode surfaces. First, the interactions of ILs with the gold electrode per unit area (, N/m) were obtained via the force-distance curves measured by gold probe AFM. Second, a QCM was employed to detect the IL amount to acquire the equilibrium number of IL molecules adsorbed onto the gold electrode per unit area (, Num/m).

View Article and Find Full Text PDF

Microbial infections represent a significant health risk, often leading to severe complications and, in some cases, even fatalities. As a result, there is an urgent need to explore innovative drug delivery systems and alternative therapeutic techniques. The photothermal therapy has emerged as a promising antibacterial approach and is the focus of this study.

View Article and Find Full Text PDF

The demand for tailored, disease-adapted, and easily accessible radiopharmaceuticals is one of the most persistent challenges in nuclear imaging precision medicine. The aim of this work was to develop two multimodal radiotracers applicable for both SPECT and PET techniques, which consist of a gold nanoparticle core, a shell involved in radioisotope entrapment, peripherally placed targeting molecules, and biocompatibilizing polymeric sequences. Shell decoration with glucosamine units located in sterically hindered molecular environments is expected to result in nanoparticle accumulation in high-glucose-consuming areas.

View Article and Find Full Text PDF

Enhancing the Antioxidant Potential of PP29 Probiotic Media through Incorporation of L. Anthocyanin Extract.

Antioxidants (Basel)

January 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.

Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, L. anthocyanin extracts protect LAB and support their development.

View Article and Find Full Text PDF

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties.

View Article and Find Full Text PDF

Therapeutic Management of Malignant Wounds: An Update.

Curr Treat Options Oncol

January 2024

Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.

Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management.

View Article and Find Full Text PDF

The superior properties of electrodeposited trimetallic CuZnCo nanoparticles, arising from the synergistic effect of combining the unique features of metallic components, were confirmed using voltametric measurements. The surface morphology and structure of the as-prepared electrocatalysts were determined using scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy techniques. Here, the trimetallic CuZnCo nanoparticles were synthesized as a powerful redox probe and highly efficient signal amplifier for the electrochemical oxidation of tryptophan.

View Article and Find Full Text PDF

Photoluminescence of Argan-Waste-Derived Carbon Nanodots Embedded in Polymer Matrices.

Nanomaterials (Basel)

December 2023

Innovative Materials for Energy and Sustainable Development (IMED-Lab), Faculty of Science and Technology, Cadi Ayyad University, Av. Abdelkrim Khattabi, B.P. 511, Marrakech 40000, Morocco.

In this work, photoluminescent (PL) carbon nano dots (CNDs) prepared from argan waste were embedded in highly optical transparent poly(styrene-co-acrylonitrile) (PSA) and cyclo-olefin copolymer (COC) matrices, which were further processed into thin films. In the first step, the luminescent CNDs were prepared through thermal processing of fine-groundargan waste, followed, in the second step, by direct dispersion in the polymer solutions, obtained by solving PSA and COC in selected solvents. These two polymer matrices were selected due to their high optical transparency, resilience to various environmental factors, and ability to be processed as quality thin films.

View Article and Find Full Text PDF

In this study, the effects of three diamine curing agents (aromatic, cycloaliphatic, aliphatic) on the photochemical behavior of bisphenol A diglycidyl ether networks were comparatively examined. In order to monitor structural changes and study the curing agents' action mode, the cured epoxy resins were characterized before and after photoirradiation by means of Fourier-transform infrared spectroscopy, contact angle, differential scanning calorimetry, scanning electron microscopy, and energy-dispersive X-ray analysis, mass loss, and color modification measurements. Water absorption tests were also conducted.

View Article and Find Full Text PDF

Nowadays, there is a growing interest in multifunctional therapeutic agents as valuable tools to improve and expand the applicability field of traditional bioactive compounds. In this context, the synthesis and main characteristics of dextran-coated iron oxide nanoparticles (IONP-Dex) loaded with both an antioxidant, protocatechuic acid (PCA), and an antibiotic, ceftazidime (CAZ) or levofloxacin (LEV) are herein reported for the first time, with emphasis on the potentiation effect of PCA on drugs activity. All nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry, differential scanning calorimetry and dynamic light scattering.

View Article and Find Full Text PDF

Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs.

View Article and Find Full Text PDF

Nanomedicine has garnered significant attention due to the advantages it offers in the treatment of cancer-related disorders, some of the deadliest diseases affecting human lives. Conventional medication formulations often encounter issues of instability or insolubility in biological environments, resulting in low bioavailability. Nanocarriers play a crucial role in transporting and safeguarding drugs at specific sites of action, enabling gradual release under particular conditions.

View Article and Find Full Text PDF

Complexes of Ibuprofen Thiazolidin-4-One Derivatives with β-Cyclodextrin: Characterization and In Vivo Release Profile and Biological Evaluation.

Pharmaceutics

October 2023

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, 16 University Street, 700115 Iasi, Romania.

Generally, NSAIDs are weakly soluble in water and contain both hydrophilic and hydrophobic groups. One of the most widely used NSAIDs is ibuprofen, which has a poor solubility and high permeability profile. By creating dynamic, non-covalent, water-soluble inclusion complexes, cyclodextrins (CDs) can increase the dissolution rate of low aqueous solubility drugs, operating as a drug delivery vehicle, additionally contributing significantly to the chemical stability of pharmaceuticals and to reducing drug-related irritability.

View Article and Find Full Text PDF

Due to their structural, morphological, and behavioral characteristics (e.g., large volume and adjustable pore size, wide functionalization possibilities, excellent biocompatibility, stability, and controlled biodegradation, the ability to protect cargoes against premature release and unwanted degradation), mesoporous silica particles (MSPs) are emerging as a promising diagnostic and delivery platform with a key role in the development of next-generation theranostics, nanovaccines, and formulations.

View Article and Find Full Text PDF