5 results match your criteria: "Centre for Quantum Technologies (CQT)[Affiliation]"

We report the creation of ultracold ground state ^{6}Li^{40}K polar molecules with high efficiency. Starting from weakly bound molecules, stimulated Raman adiabatic passage is adopted to coherently transfer the molecules to their singlet rovibrational ground state |X^{1}Σ^{+},v=0,J=0⟩. By employing a singlet stimulated Raman adiabatic passage pathway and low-phase-noise narrow-linewidth lasers, we observed a one-way transfer efficiency of 96(4)%.

View Article and Find Full Text PDF

We report on a high-resolution spectroscopic survey of LiK molecules near the 2S + 4P dissociation threshold and produce a fully empirical representation for the BΠ potential by connecting available short- and long-range data. The purpose is to identify a suitable intermediate state for a coherent Raman transfer to the absolute ground state, and the creation of a molecular gas with dipolar interactions. Starting from weakly bound ultracold Feshbach molecules, the transition frequencies to twenty-six vibrational states are determined.

View Article and Find Full Text PDF

Starting from weakly bound Feshbach molecules, we demonstrate a two-photon pathway to the dipolar ground state of bi-alkali molecules that involves only singlet-to-singlet optical transitions. This pathway eliminates the search for a suitable intermediate state with sufficient singlet-triplet mixing and the exploration of its hyperfine structure, as is typical for pathways starting from triplet dominated Feshbach molecules. By selecting a Feshbach state with a stretched singlet hyperfine component and controlling the laser polarizations, we assure coupling to only single hyperfine components of the A^{1}Σ^{+} excited potential and the X^{1}Σ^{+} rovibrational ground state.

View Article and Find Full Text PDF

Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field-the Hofstadter butterfly.

View Article and Find Full Text PDF

Here we report of a design and the performance of an optimized micro-fabricated conveyor belt for precise and adiabatic transportation of cold atoms. A theoretical model is presented to determine optimal currents in conductors used for the transportation. We experimentally demonstrate a fast adiabatic transportation of Rubidium (Rb) cold atoms with minimal loss and heating with as few as three conveyor belt conductors.

View Article and Find Full Text PDF