249 results match your criteria: "Centre for Pharmaceutical Nanotechnology[Affiliation]"

Colon-Adhering Delivery System with Inflammation Responsiveness for Localized Therapy of Experimental Colitis.

ACS Biomater Sci Eng

August 2023

Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India.

Ulcerative colitis (UC) is a chronic inflammation-related disease that severely affects the colon and rectum regions. A variety of therapy regimens are used for the treatment of UC. Clinically, therapeutic enema is the choice of therapy for UC patients.

View Article and Find Full Text PDF

Recent advances in lipid-based long-acting injectable depot formulations.

Adv Drug Deliv Rev

August 2023

Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India. Electronic address:

Long-acting injectable (LAIs) delivery systems sustain the drug therapeutic action in the body, resulting in reduced dosage regimen, toxicity, and improved patient compliance. Lipid-based depots are biocompatible, provide extended drug release, and improve drug stability, making them suitable for systemic and localized treatment of various chronic ailments, including psychosis, diabetes, hormonal disorders, arthritis, ocular diseases, and cancer. These depots include oil solutions, suspensions, oleogels, liquid crystalline systems, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, phospholipid phase separation gel, vesicular phospholipid gel etc.

View Article and Find Full Text PDF

NLRP3 Inflammasome-Targeting Nanomicelles for Preventing Ischemia-Reperfusion-Induced Inflammatory Injury.

ACS Nano

May 2023

Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow 226003, India.

Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug.

View Article and Find Full Text PDF

In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.

View Article and Find Full Text PDF

Introduction: Bisphenol A (BPA) is a substance commonly used in dental materials with noxious properties. Monomers of this substance may be dissolved in the saliva and cause adverse effects. This study aimed to evaluate the amount of BPA released in the saliva after residual adhesive removal in orthodontic patients using an ultrasonic scaler (US) and tungsten carbide bur (TCB).

View Article and Find Full Text PDF

Breast cancer leads to the highest mortality among women resulting in a major clinical burden. Multidrug therapy is more efficient in such patients compared to monodrug therapy. Simultaneous combinatorial or co-delivery garnered significant interest in the past years.

View Article and Find Full Text PDF

Sildenafil (SLD) is employed for the management of erectile dysfunction and pulmonary arterial hypertension. It exhibits meagre water solubility and is available in the form of citrate salt hydrate to improve the solubility. However, it still exhibits moderate solubility, high first-pass metabolism, resulting in very less oral bioavailability.

View Article and Find Full Text PDF

In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a novel cross-linker, triethylene glycol dimethacrylate (TEGDMA), as a biocompatible and nontoxic component. The structural and physicochemical features of the P(VCL-co-AA) nanogel were characterized by FT-IR, DLS/Zeta potential, FE-SEM, and HNMR techniques. The results indicated that spherical polymeric nanogel was successfully synthesized with a 182 nm diameter.

View Article and Find Full Text PDF

Functionalized-DNA nanostructures as potential targeted drug delivery systems for cancer therapy.

Semin Cancer Biol

November 2022

Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali 140306, Punjab, India. Electronic address:

Seeman's pioneer idea has led to the foundation of DNA nanostructures, resulting in a remarkable advancement in DNA nanotechnology. Over the last few decades, remarkable advances in drug delivery techniques have resulted in the self-assembly of DNA for encapsulating candidate drug molecules. The nuclear targeting capability of DNA nanostructures is lies within their high spatial addressability and tremendous potential for active targeting.

View Article and Find Full Text PDF

Biosimilar monoclonal antibodies: Challenges and approaches towards formulation.

Chem Biol Interact

October 2022

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA. Electronic address:

Many biologic drug products, particularly monoclonal antibodies (mAbs), were off-patented between 2015 and 2020, and this process is continuing as the number of biologics approvals has increased. However, the availability of affordable biosimilars is delayed by secondary patents related to the formulation and manufacturing process. Therefore, an alternative formulation development is required to avoid infringement of formulation related patents.

View Article and Find Full Text PDF

The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution.

View Article and Find Full Text PDF

The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor-targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor-mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell.

View Article and Find Full Text PDF

Objectives: The current study's objectives were to obtain different extracts and essential oils of and and to determine the chemical composition, as well as to evaluate free radical scavenging activity (IC) and minimum bactericidal concentration (MBC), and the effect of liposomal formulation on antimicrobial properties.

Materials And Methods: Air-dried powdered aerial parts of and were used. The antioxidant and antibacterial properties, essential oil compositions, total phenol, and flavonoid contents of different fractions were determined by DPPH test, disk diffusion assay, gas chromatography-mass spectrometry, Folin-ciocalteu reagent, and colorimetric assay method, respectively.

View Article and Find Full Text PDF

The present investigation demonstrates the preparation of solid self nanoemulsfying drug delivery system (sSNEDDS) to enhance stability and bioavailability of Erlotinib (ERL) via the oral route. Capmul®MCM EP (CPM EP, oil), Cremophor® RH 40 (CMR RH 40, surfactant), and LBF CS (LBF CS, cosurfactant) were chosen as chief components for preparing Liquids SNEDDS (L-ERL-SNEDDS) based on solubility and emulsion forming ability. Pseudo ternary phase diagram and constrained mixture designs were applied to identify the self-emulsifying area and it was found that CPM EP, CMR RH 40, and LBF CS in the ratio of 59:11:30 showed optimized particle size (110.

View Article and Find Full Text PDF
Article Synopsis
  • Nanosponge technology is important for drug delivery systems as it helps target specific skin layers while improving drug retention and effectiveness.
  • The review discusses the preparation, characteristics, and various factors influencing the performance of nanosponges in delivering drugs through the skin, alongside their benefits and drawbacks.
  • Nanosponge formulations enhance the solubility and bioavailability of drugs with lower aqueous solubility, making them useful for targeted delivery, controlled release, and reduced toxicity, with growing interest in using them for biologics like vaccines and enzymes.
View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) cells show improved sensitivity for cisplatin therapy due to their defective DNA damage repair system. However, the clinical utilization of cisplatin is limited by dose-dependent systemic toxicities and chemoresistance. Cisplatin Pt(IV) derivatives having kinetically inert octahedral geometry provide an effective strategy to overcome these limitations.

View Article and Find Full Text PDF

The application of mesoporous silica nanoparticles (MSNs) is ubiquitous in various sciences. MSNs possess unique features, including the diversity in manufacturing by different synthesis methods and from different sources, structure controllability, pore design capabilities, pore size tunability, nanoparticle size distribution adjustment, and the ability to create diverse functional groups on their surface. These characteristics have led to various types of MSNs as a unique system for drug delivery.

View Article and Find Full Text PDF

Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action.

View Article and Find Full Text PDF

Cisplatin is a platinum (Pt)-based anticancer drug with broad-scale clinical utility. However, due to its hydrophilic nature and high kinetic reactivity, it offers numerous drug delivery challenges. Limitations such as severe systemic toxicities, chemoresistance, extensive cisplatin-plasma protein interaction, and limited cellular drug uptake reduce the therapeutic impact of cisplatin therapy.

View Article and Find Full Text PDF
Article Synopsis
  • TBK1 is crucial for managing cellular responses and controlling various signaling pathways, including those related to inflammation and cancer.
  • Post-translational modifications of TBK1 influence its function and the signaling processes in cells, and dysregulation of TBK1 is linked to several diseases, notably cancer.
  • The study discusses potential TBK1 inhibitors, which could serve as therapeutic agents against cancer and other TBK1-related diseases.
View Article and Find Full Text PDF
Article Synopsis
  • * CA's anti-tumor effects come from its ability to control oxidative stress, reduce blood vessel formation in tumors, and influence DNA and enzyme activity in cancer cells.
  • * The review discusses CA's therapeutic potential, its challenges related to absorption and bioavailability, and the need for more research to optimize its use in cancer treatment and prevention.
View Article and Find Full Text PDF

Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering.

Carbohydr Polym

June 2022

Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar (Mohali), Punjab 160062, India. Electronic address:

Chondroitin Sulfate (CS) is an anionic hetero polysaccharide possessing anti-inflammatory, antioxidant, antitumor, anticoagulant and antithrombogenic activities. It is biodegradable and biocompatible in nature. Further, it inherits the ability of active and subcellular targeting due to its affinity for CD 44 receptors and glycosylation enzymes, which are overexpressed on the surface of tumor cells and intracellular organelles respectively.

View Article and Find Full Text PDF

Introduction: Psoriasis is an auto-immune inflammatory skin disease affecting people worldwide. Its topical therapy via different nanoformulations prevents the long-term side-effects of conventional formulations. Nanocarriers, especially solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), pose extra benefits in topical drug delivery due to their lipid constituents.

View Article and Find Full Text PDF

Complement is an enzymatic humoral pattern-recognition defence system of the body. Non-specific deposition of blood biomolecules on nanomedicines triggers complement activation through the alternative pathway, but complement-triggering mechanisms of nanomaterials with dimensions comparable to or smaller than many globular blood proteins are unknown. Here we study this using a library of <6 nm poly(amido amine) dendrimers bearing different end-terminal functional groups.

View Article and Find Full Text PDF