9 results match your criteria: "Centre for Molecular Biology Severo Ochoa (CBMSO)[Affiliation]"
Microb Cell Fact
January 2024
Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain.
Background: Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported.
View Article and Find Full Text PDFiScience
January 2023
Animal Health Research Center (CISA-INIA), Valdeolmos, Madrid 28130, Spain.
The differentiation of B cells into antibody-secreting cells is fundamental for the generation of humoral immunity. In mammals, this process involves a series of metabolic and intracellular changes, not studied to date in teleost fish, where a clear distinction between naive B cells and plasmablasts/plasma cells (PCs) is still missing. Thus, in the current study, we have established that upon activation, teleost B cells undergo an expansion of the endoplasmic reticulum (ER) but experience no significant changes in mitochondria content.
View Article and Find Full Text PDFInt J Mol Sci
October 2022
Department of Molecular Biology, University Institute of Molecular Biology (IUBM-UAM), Centre for Molecular Biology "Severo Ochoa" (CBMSO) UAM-CSIC, Autonomous University of Madrid and Health Research Institute Hospital Universitario La Princesa, 28006 Madrid, Spain.
A better understanding of the complex crosstalk among key receptors and signaling pathways involved in cancer progression is needed to improve current therapies. We have investigated in cell models representative of the major subtypes of breast cancer (BC) the interplay between the chemokine CXCL12/CXCR4/ACKR3 and EGF receptor (EGFR) family signaling cascades. These cell lines display a high heterogeneity in expression profiles of CXCR4/ACKR3 chemokine receptors, with a predominant intracellular localization and different proportions of cell surface CXCR4+, ACKR3+ or double-positive cell subpopulations, and display an overall modest activation of oncogenic pathways in response to exogenous CXCL12 alone.
View Article and Find Full Text PDFSemin Cell Dev Biol
December 2022
Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain. Electronic address:
Every time a cell copies its DNA the genetic material is exposed to the acquisition of mutations and genomic alterations that corrupt the information passed on to daughter cells. A tight temporal regulation of DNA replication is necessary to ensure the full copy of the DNA while preventing the appearance of genomic instability. Protein modification by ubiquitin and SUMO constitutes a very complex and versatile system that allows the coordinated control of protein stability, activity and interactome.
View Article and Find Full Text PDFCell Rep
October 2021
Chromatin, Cancer and the Ubiquitin System lab, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Department of Genome Dynamics and Function, Madrid 28049, Spain. Electronic address:
The AAA ATPase VCP regulates the extraction of SUMO and ubiquitin-modified DNA replication factors from chromatin. We have previously described that active DNA synthesis is associated with a SUMO-high/ubiquitin-low environment governed by the deubiquitylase USP7. Here, we unveil a functional cooperation between USP7 and VCP in DNA replication, which is conserved from Caenorhabditis elegans to mammals.
View Article and Find Full Text PDFInt J Mol Sci
August 2021
Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), Chromatin, Cancer and the Ubiquitin System Lab, Department of Genome Dynamics and Function, 28049 Madrid, Spain.
Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability.
View Article and Find Full Text PDFEMBO J
June 2021
Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate.
View Article and Find Full Text PDFACS Chem Neurosci
May 2018
Centre for Biomedical Technology (CTB), Universidad Politécnica de Madrid , 28223 Madrid , Spain.
Early diagnosis in Alzheimer's disease (AD), prior to the appearance of marked clinical symptoms, is critical to prevent irreversible neuronal damage and neural malfunction that lead to dementia and death. Therefore, there is an urgent need to generate new contrast agents which reveal by a noninvasive method the presence of some of the pathological signs of AD. In the present study, we demonstrate for the first time a new nanoconjugate composed of magnetic nanoparticles bound to an antiferritin antibody, which has been developed based on the existence of iron deposits and high levels of the ferritin protein present in areas with a high accumulation of amyloid plaques (particularly the subiculum in the hippocampal area) in the brain of a transgenic mouse model with five familial AD mutations.
View Article and Find Full Text PDFSyst Biol
November 2017
Centre for Molecular Biology Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
The computational reconstruction of ancestral proteins provides information on past biological events and has practical implications for biomedicine and biotechnology. Currently available tools for ancestral sequence reconstruction (ASR) are often based on empirical amino acid substitution models that assume that all sites evolve at the same rate and under the same process. However, this assumption is frequently violated because protein evolution is highly heterogeneous due to different selective constraints among sites.
View Article and Find Full Text PDF