6 results match your criteria: "Centre for Instrumentation Sharing Pisa University[Affiliation]"
Phytother Res
May 2023
Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy.
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP -R ; rich in alkamides) and butanolic extract (EP -R ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test.
View Article and Find Full Text PDFFront Chem
September 2022
Department of Pathology, University of Pisa, Pisa, Italy.
It is well known that G protein-coupled receptors (GPCRs) assume multiple active states. Orthosteric ligands and/or allosteric modulators can preferentially stabilize specific conformations, giving rise to pathway-biased signaling. One of the most promising strategies to expand the repertoire of signaling-selective GPCR activators consists of dualsteric agents, which are hybrid compounds consisting of orthosteric and allosteric pharmacophoric units.
View Article and Find Full Text PDFJ Med Chem
July 2022
Department of Pharmacy, University of Pisa, Pisa 56126, Italy.
The design of dualsteric/bitopic agents as single chemical entities able to simultaneously interact with both the orthosteric and an allosteric binding site represents a novel approach in medicinal chemistry. Biased dualsteric/bitopic agents could enhance certain signaling pathways while diminishing the others that cause unwanted side effects. We have designed, synthesized, and functionally characterized the first CB2R heterobivalent bitopic ligands.
View Article and Find Full Text PDFEur J Med Chem
December 2021
Department of Pharmacy, University of Pisa, 56126, Pisa, Italy; CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126, Pisa, Italy. Electronic address:
We report the synthesis of novel first-in-class 2-oxindole-based derivatives as dual PDK1-AurA kinase inhibitors as a novel strategy to treat Ewing sarcoma. The most potent compound 12 is suitable for progression to in vivo studies. The specific attributes of 12 included nanomolar inhibitory potency against both phosphoinositide-dependent kinase-1 (PDK1) and Aurora A (AurA) kinase, with acceptable in vitro ADME-Tox properties (cytotoxicity in 2 healthy and 14 hematological and solid cancer cell-lines; inhibition of PDE4C1, SIRT7, HDAC4, HDAC6, HDAC8, HDAC9, AurB, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and hERG).
View Article and Find Full Text PDFBioorg Chem
February 2021
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; CISUP, Centre for Instrumentation Sharing Pisa University, Lungarno Pacinotti 43, 56126 Pisa, Italy. Electronic address:
Mitochondria play a key role for deciding fate of cells and thus are considered an attractive target for pharmacological interventions focused on containment of myocardial ischemia/reperfusion (I/R) injury. Notably, the activation of mitochondrial potassium (mitoK) channels produces a mild depolarization of mitochondrial membrane, that contributes to reduce the driving force to calcium uptake and prevents the formation of mitochondrial transition membrane pore (MPTP); these events underlie anti-ischemic cardioprotection. However, an ideal mitoK channel opener should possess the fundamental requirement to be delivered at mitochondrial level; therefore, to improve the mitochondrial delivery of a previously characterized spirocyclic benzopyrane F81, new compounds have been developed.
View Article and Find Full Text PDFFoods
October 2020
Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
A growing body of literature is available about the valorization of food by-products to produce functional foods that combine the basic nutritional impact with the improvement of the health status of consumers. In this context, this study had two main objectives: (i) An innovative multistep extraction process for the production of a refined olive oil enriched with phenolic compounds (PE-ROO) extracted from olive pomace, olive leaves, or grape marc was presented and discussed. (ii) The most promising PE-ROOs were selected and utilized in in vitro and in vivo trials in order to determine their effectiveness in the management of high fat diet-induced-metabolic syndrome and oxidative stress in rats.
View Article and Find Full Text PDF