17 results match your criteria: "Centre for Genomic Regulation and UPF[Affiliation]"

Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development.

View Article and Find Full Text PDF

Although the similarities between humans and mice are typically highlighted, morphologically and genetically, there are many differences. To better understand these two species on a molecular level, we performed a comparison of the expression profiles of 15 tissues by deep RNA sequencing and examined the similarities and differences in the transcriptome for both protein-coding and -noncoding transcripts. Although commonalities are evident in the expression of tissue-specific genes between the two species, the expression for many sets of genes was found to be more similar in different tissues within the same species than between species.

View Article and Find Full Text PDF

IRBIS: a systematic search for conserved complementarity.

RNA

October 2014

Centre for Genomic Regulation and UPF, Barcelona 08003, Spain Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia

IRBIS is a computational pipeline for detecting conserved complementary regions in unaligned orthologous sequences. Unlike other methods, it follows the "first-fold-then-align" principle in which all possible combinations of complementary k-mers are searched for simultaneous conservation. The novel trimming procedure reduces the size of the search space and improves the performance to the point where large-scale analyses of intra- and intermolecular RNA-RNA interactions become possible.

View Article and Find Full Text PDF

The Polycomb repressive complex 1 (PRC1) is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs), two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive.

View Article and Find Full Text PDF

The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts.

View Article and Find Full Text PDF

Splicing remains an incompletely understood process. Recent findings suggest that chromatin structure participates in its regulation. Here, we analyze the RNA from subcellular fractions obtained through RNA-seq in the cell line K562.

View Article and Find Full Text PDF

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function.

View Article and Find Full Text PDF

The Neurexin 3 gene (NRXN3) has been associated with dependence on various addictive substances, as well as with the degree of smoking in schizophrenic patients and impulsivity among tobacco abusers. To further evaluate the role of NRXN3 in nicotine addiction, we analyzed single nucleotide polymorphisms (SNPs) and a copy number variant (CNV) within the NRXN3 genomic region. An initial study was carried out on 157 smokers and 595 controls, all of Spanish Caucasian origin.

View Article and Find Full Text PDF

We address the challenge of regulatory sequence alignment with a new method, Pro-Coffee, a multiple aligner specifically designed for homologous promoter regions. Pro-Coffee uses a dinucleotide substitution matrix estimated on alignments of functional binding sites from TRANSFAC. We designed a validation framework using several thousand families of orthologous promoters.

View Article and Find Full Text PDF

Polycomb group proteins are essential regulators of cell fate decisions during embryogenesis. In mammals, at least five different Cbx proteins (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8) are known to associate with the core Polycomb repressive complex 1 (PRC1). Here we show that pluripotency and differentiation of mouse embryonic stem cells (ESCs) is regulated by different Cbx-associated PRC1 complexes with unique functions.

View Article and Find Full Text PDF

Long non-coding RNAs in Huntington's disease neurodegeneration.

Neurobiol Dis

May 2012

Bioinformatics and Genomics Group, Centre for Genomic Regulation and UPF, C Dr Aiguader, 88 Barcelona 08003, Catalonia, Spain.

Neurodegeneration in the brains of Huntington's disease patients is accompanied by widespread changes in gene regulatory networks. Recent studies have found that these changes are not restricted to protein-coding genes, but also include non-coding RNAs (ncRNAs). One particularly abundant but poorly understood class of ncRNAs is the long non-coding RNAs (lncRNAs), of which at least ten thousand have been identified in the human genome.

View Article and Find Full Text PDF

Why are short introns rarely a multiple of three nucleotides long? Why do essential genes cluster? Why are genes in operons often lined up in the order in which they are needed in the encoded pathway? In this Opinion article, we argue that these and many other - ostensibly disparate - observations are all pieces of an emerging picture in which multiple aspects of gene anatomy and genome architecture have evolved in response to error-prone gene expression.

View Article and Find Full Text PDF

STRIKE: evaluation of protein MSAs using a single 3D structure.

Bioinformatics

December 2011

Bioinformatics and Genomics Program, Centre for Genomic Regulation and UPF, Aiguader, 88, 08003 Barcelona, Spain.

Motivation: Evaluating alternative multiple protein sequence alignments is an important unsolved problem in Biology. The most accurate way of doing this is to use structural information. Unfortunately, most methods require at least two structures to be embedded in the alignment, a condition rarely met when dealing with standard datasets.

View Article and Find Full Text PDF

Biological function and cellular responses to environmental perturbations are regulated by a complex interplay of DNA, RNA, proteins and metabolites inside cells. To understand these central processes in living systems at the molecular level, we integrated experimentally determined abundance data for mRNA, proteins, as well as individual protein half-lives from the genome-reduced bacterium Mycoplasma pneumoniae. We provide a fine-grained, quantitative analysis of basic intracellular processes under various external conditions.

View Article and Find Full Text PDF

The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs).

View Article and Find Full Text PDF