1,861 results match your criteria: "Centre for Genomic Regulation CRG[Affiliation]"

Article Synopsis
  • ProTInSeq is a technique for identifying open reading frames (ORFs) in proteins by utilizing transposon insertions that signal when they fall within a protein-coding region.
  • In Mycoplasma pneumoniae, ProTInSeq successfully identifies 83% of known proteins and discovers 158 previously unannotated proteins, including small ORF-encoded proteins (SEPs).
  • This method enhances the understanding of proteomes by offering insights into translational noise and helps to expand the known SEP count from 27 to 329, with a significant portion predicted to have antimicrobial properties.
View Article and Find Full Text PDF

Alternative splicing decouples local from global PRC2 activity.

Mol Cell

March 2024

Genome Biology Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Carrer del Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain. Electronic address:

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.

View Article and Find Full Text PDF
Article Synopsis
  • The oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by LOXL2 and is found in triple-negative breast cancer (TNBC) cells, where it maintains compacted chromatin.* -
  • LOXL2 interacts with key proteins (RUVBL1, RUVBL2, ACTL6A, DMAP1) that are essential for incorporating the histone variant H2A.Z, which plays a role in chromatin structure.* -
  • Without LOXL2 or RUVBL2, levels of important heterochromatin markers are reduced, impacting the oncogenic features of TNBC cells, suggesting that this molecular interplay is crucial for cancer
View Article and Find Full Text PDF

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy.

View Article and Find Full Text PDF

An Insertion Within SIRPβ1 Shows a Dual Effect Over Alzheimer's Disease Cognitive Decline Altering the Microglial Response.

J Alzheimers Dis

March 2024

Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.

Article Synopsis
  • - Microglial dysfunction is linked to Alzheimer's disease (AD), with a focus on a variant affecting the SIRPβ1 receptor that regulates the clearance of amyloid-β (Aβ).
  • - The study found that a specific insertion in the SIRPβ1 gene alters protein function, increasing the risk of AD and affecting cognitive decline rates in patients with mild cognitive impairment.
  • - Results suggest that this SIRPβ1 variant could influence microglial responses to Aβ and may serve as a potential target for treatment strategies that involve the TREM2-TYROBP pathway.
View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources).

View Article and Find Full Text PDF

Down syndrome (DS) stands as the prevalent genetic cause of intellectual disability, yet comprehensive understanding of its cellular and molecular underpinnings remains limited. In this study, we explore the cellular landscape of the hippocampus in a DS mouse model, the Ts65Dn, through single-nuclei transcriptional profiling. Our findings demonstrate that trisomy manifests as a highly specific modification of the transcriptome within distinct cell types.

View Article and Find Full Text PDF

RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients.

View Article and Find Full Text PDF

Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis.

Cell Commun Signal

February 2024

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.

Background: Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death.

Methods: We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice.

View Article and Find Full Text PDF

Mouse oocytes sequester aggregated proteins in degradative super-organelles.

Cell

February 2024

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain. Electronic address:

Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown.

View Article and Find Full Text PDF

Pleiotropic contribution of rbfox1 to psychiatric and neurodevelopmental phenotypes in two zebrafish models.

Transl Psychiatry

February 2024

Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalunya, Spain.

RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages.

View Article and Find Full Text PDF

Unlabelled: is the causal agent for brown spot needle blight that affects pine trees across the northern hemisphere. Based on marker genes and microsatellite data, two distinct lineages have been identified that were introduced into Europe on two separate occasions. Despite their overall distinct geographic distribution, they have been found to coexist in regions of northern Spain and France.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures.

View Article and Find Full Text PDF

Genetically identical animals kept in a constant environment display a wide distribution of lifespans, reflecting a large non-genetic, stochastic aspect to aging conserved across all organisms studied. This stochastic component means that in order to understand aging and identify successful interventions that extend the lifespan or improve health, researchers must monitor large populations of experimental animals simultaneously. Traditional manual death scoring limits the throughput and scale required for large-scale hypothesis testing, leading to the development of automated methods for high-throughput lifespan assays.

View Article and Find Full Text PDF

Here we report the characterization of 17T2, a SARS-CoV-2 pan-neutralizing human monoclonal antibody isolated from a COVID-19 convalescent individual infected during the first pandemic wave. 17T2 is a class 1 VH1-58/κ3-20 antibody, derived from a receptor binding domain (RBD)-specific IgA memory B cell, with a broad neutralizing activity against former and new SARS-CoV-2 variants, including XBB.1.

View Article and Find Full Text PDF

Biological basis of extensive pleiotropy between blood traits and cancer risk.

Genome Med

February 2024

ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, 08908, Barcelona, Catalonia, Spain.

Background: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined.

View Article and Find Full Text PDF

Microtubules are essential for intracellular organization and chromosome segregation. They are nucleated by the γ-tubulin ring complex (γTuRC). However, isolated vertebrate γTuRC adopts an open conformation that deviates from the microtubule structure, raising the question of the nucleation mechanism.

View Article and Find Full Text PDF

Capturing Cytoskeleton-Based Agitation of The Mouse Oocyte Nucleus Across Spatial Scales.

J Vis Exp

January 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL;

A major challenge in understanding the causes of female infertility is to elucidate mechanisms governing the development of female germ cells, named oocytes. Their development is marked by cell growth and subsequent divisions, two critical phases that prepare the oocyte for fusion with sperm to initiate embryogenesis. During growth, oocytes reorganize their cytoplasm to position the nucleus at the cell center, an event predictive of successful oocyte development in mice and humans and, thus, their embryogenic potential.

View Article and Find Full Text PDF

Identifying causal mutations accelerates genetic disease diagnosis, and therapeutic development. Missense variants present a bottleneck in genetic diagnoses as their effects are less straightforward than truncations or nonsense mutations. While computational prediction methods are increasingly successful at prediction for variants in disease genes, they do not generalize well to other genes as the scores are not calibrated across the proteome.

View Article and Find Full Text PDF

Ribosomal proteins (RPs) are evolutionary conserved proteins that are essential for protein translation. RP expression must be tightly regulated to ensure the appropriate assembly of ribosomes and to respond to the growth demands of cells. The elements regulating the transcription of RP genes (RPGs) have been characterized in yeast and , yet how cells regulate the production of RPs in mammals is less well understood.

View Article and Find Full Text PDF