12 results match your criteria: "Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra[Affiliation]"

Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome.

Genome Biol

August 2018

Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, VIC, 3083, Australia.

Background: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.

Results: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data.

View Article and Find Full Text PDF

In Fig. 2 of this Article originally published, some erroneous lines appeared on the left side of the images in panels c, e and g. The figure should have appeared as shown below.

View Article and Find Full Text PDF

Migratory appendicular muscles precursor cells in the common ancestor to all vertebrates.

Nat Ecol Evol

November 2017

School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.

In amniote embryos, skeletal muscles in the trunk are derived from epithelial dermomyotomes, the ventral margin of which extends ventrally to form body wall muscles. At limb levels, ventral dermomyotomes also generate limb-muscle precursors, an Lbx1-positive cell population that originates from the dermomyotome and migrates distally into the limb bud. In elasmobranchs, however, muscles in the paired fins were believed to be formed by direct somitic extension, a developmental pattern used by the amniote body wall muscles.

View Article and Find Full Text PDF

Gammaproteobacteria get energy for their growth from different carbon sources using either glycolysis or alternative metabolic pathways induced in stress conditions. These metabolic switches are coordinated by complex interplay of regulatory proteins sensing concentrations of available metabolites by mechanisms yet to be understood. Here, we use two transcriptional regulators, ExuR and UxuR, controlling d-galacturonate (d-gal) and d-glucuronate metabolism in Escherichia coli, as the targets for computational search of low-molecular compounds capable to bind their ligand-binding domains.

View Article and Find Full Text PDF

A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754-1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.

View Article and Find Full Text PDF

Summary: Here we introduce catRAPID omics, a server for large-scale calculations of protein-RNA interactions. Our web server allows (i) predictions at proteomic and transcriptomic level; (ii) use of protein and RNA sequences without size restriction; (iii) analysis of nucleic acid binding regions in proteins; and (iv) detection of RNA motifs involved in protein recognition.

Results: We developed a web server to allow fast calculation of ribonucleoprotein associations in Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae and Xenopus tropicalis (custom libraries can be also generated).

View Article and Find Full Text PDF

Quantitative proteomics is an essential tool in proteome research since it enables measuring changes in protein abundance in response to biological perturbations. During the last few years, different quantitative strategies have been developed in proteomics to compare different experimental conditions, including label-free and isobaric chemical labeling approaches. Here we show that different quantitation techniques have an important influence on detected sample variability, and we use the combination of six different quantitation strategies to perform a proteome comparison of three different Mycoplasma pneumoniae strains (ldh knockdown, Δprkc, and wild-type).

View Article and Find Full Text PDF

Motivation: The avalanche of data arriving since the development of NGS technologies have prompted the need for developing fast, accurate and easily automated bioinformatic tools capable of dealing with massive datasets. Among the most productive applications of NGS technologies is the sequencing of cellular RNA, known as RNA-Seq. Although RNA-Seq provides similar or superior dynamic range than microarrays at similar or lower cost, the lack of standard and user-friendly pipelines is a bottleneck preventing RNA-Seq from becoming the standard for transcriptome analysis.

View Article and Find Full Text PDF

Gene duplication as a mechanism of genomic adaptation to a changing environment.

Proc Biol Sci

December 2012

Institució Catalana de Recerca i Estudis Avançats, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra, 88 Dr Aiguader, Barcelona 08003, Spain.

A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene duplications to various environmental conditions in different species have been described. At this point, it is too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by positive selection for increased dosage.

View Article and Find Full Text PDF

Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering.

View Article and Find Full Text PDF

In order to investigate the relationship between the thermodynamics and kinetics of protein aggregation, we compared the solubility of proteins with their aggregation rates. We found a significant correlation between these two quantities by considering a database of protein solubility values measured using an in vitro reconstituted translation system containing about 70% of Escherichia coli proteins. The existence of such correlation suggests that the thermodynamic stability of the native states of proteins relative to the aggregate states is closely linked with the kinetic barriers that separate them.

View Article and Find Full Text PDF

To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations.

View Article and Find Full Text PDF