3,863 results match your criteria: "Centre for Genetic Engineering and Biotechnology[Affiliation]"

Shaping resilience: The critical role of plant response regulators in salinity stress.

Biochim Biophys Acta Gen Subj

December 2024

National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab 140306, India; Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:

Background: Salinity stress affects plant growth, development, biomass, yield, as well as their survival. A series of signaling cascade is activated to cope the deleterious effect of salinity stress. Cytokinins are known for their regulatory roles from cell growth and expansion to abiotic stress signaling.

View Article and Find Full Text PDF

Our investigation uncovers that nanomolar concentrations of salinomycin, monensin, nigericin, and narasin (a group of potassium/sodium cation carriers) robustly enhance surface expression of CD20 antigen in B-cell-derived tumor cells, including primary malignant cells of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Experiments in vitro, ex vivo, and animal model reveal a novel approach of combining salinomycin or monensin with therapeutic anti-CD20 monoclonal antibodies or anti-CD20 CAR-T cells, significantly improving non- Hodgkin lymphoma (NHL) therapy. The results of RNA-seq, genetic editing, and chemical inhibition delineate the molecular mechanism of CD20 upregulation, at least partially, to the downregulation of MYC, the transcriptional repressor of the MS4A1 gene encoding CD20.

View Article and Find Full Text PDF

Alkhumra fever is a viral disease caused by the Alkhumra hemorrhagic fever virus (AHFV). It belongs to family , genus . AHFV is primarily transmitted to humans through the bite of infected ticks, for example, .

View Article and Find Full Text PDF

Cellulase production for hydrolyzing plant cell walls is energy-intensive in filamentous fungi during nutrient scarcity. AMP-activated protein kinase (AMPK), encoded by snf1, is known to be the nutrient and energy sensor in eukaryotes. Previous studies on AMPK identified its role in alternate carbon utilization in pathogenic fungi.

View Article and Find Full Text PDF

Pathological vascular remodeling (VR) is characterized by structural and functional alterations in the vascular wall resulting from injury, which significantly contribute to the development of cardiovascular diseases (CVDs). The vascular wall consists primarily of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs), whose interactions are crucial for both the formation of the vascular system and the maintenance of mature blood vessels. Disruptions in the communication between these cell types have been implicated in the progression of VR.

View Article and Find Full Text PDF

Unlabelled: Wheat ( L.), a vital cereal crop, provides over 20% of the total calories and protein in the human diet. However, , the pathogen responsible for Fusarium head blight (FHB), poses a significant threat to wheat production by contaminating grains with harmful mycotoxins.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) management presents a multifaceted clinical challenge, intricately linking oncological considerations with cardiovascular health. Despite the recognized importance of lipid metabolism and hypertension in this interwoven relationship, their involvement in PCa development remains partially understood. This study aimed to explore variations in plasma metabolome among Sudanese PCa patients and their associated comorbidities.

View Article and Find Full Text PDF

Plant two-component system (TCS) is crucial for phytohormone signalling, stress response, and circadian rhythms, yet the precise role of most of the family members in rice remain poorly understood. In this study, we investigated the function of OsPHP1, a pseudo-histidine phosphotransfer protein in rice, using a functional genomics approach. OsPHP1 is localised in the nucleus and cytosol, and it exhibits strong interactions with all sensory histidine kinase proteins (OsHK1-6) and cytokinin catabolism genes.

View Article and Find Full Text PDF

Herbicide-treated soil as a reservoir of beneficial bacteria: microbiome analysis and PGP bioinoculants in maize.

Environ Microbiome

December 2024

Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.

Background: Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices.

View Article and Find Full Text PDF

By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking.

View Article and Find Full Text PDF

Background: Nuclear import, dependent on the transporter importin α (IMPα), is a drug target for apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii. Indeed, a panel of small molecule inhibit interactions between IMPα and nuclear localization signals (NLSs) in vitro and the growth of rapidly dividing stages (P. falciparum blood stages and T.

View Article and Find Full Text PDF

Unlabelled: Previous studies have shown that E6 interacts with the E6-associated protein (E6AP) ubiquitin-protein ligase and directs its ubiquitylation activity toward several specific cellular proteins, one of the most important of which is p53. Interestingly, E6AP not only aids in the E6-directed degradation of cellular substrates but also stabilizes the E6 protein by protecting it from proteasome-mediated degradation. However, there is no information available about the ubiquitin ligases that regulate the stability and activity of the human papillomavirus (HPV) E6 oncoprotein in the absence of E6AP.

View Article and Find Full Text PDF

Identification of ABC transporter Cdr1 inhibitors of Candida glabrata.

Arch Biochem Biophys

December 2024

School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India. Electronic address:

Candida glabrata is one of the most common causes of invasive candidiasis. Rising treatment failures from resistance to current antifungal drugs highlight the need for new antifungals. Overexpression of efflux pump transporter genes is significantly associated with the development of multidrug resistance.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a significant global health challenge, exacerbated by the emergence of drug-resistant strains of Mycobacterium tuberculosis (M. tb). The complex biology of M.

View Article and Find Full Text PDF

Editor profile: Lawrence Banks.

FEBS J

December 2024

Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.

In this special interview series, we profile members of The FEBS Journal Editorial Board to highlight their research focus, perspectives on the journal, and future directions in their scientific fields. Lawrence Banks is the Director-General of the International Centre for Genetic Engineering and Biotechnology (ICGEB) in Trieste, Italy. He has served as an editorial board member of The FEBS Journal since 2013.

View Article and Find Full Text PDF

Investigating the binding of fluorescent probes to a trypanosomal-tRNA synthetase: A fluorescence spectroscopic and molecular dynamics study.

Arch Biochem Biophys

December 2024

Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India. Electronic address:

Given the high prevalence of Chagas disease in the Americas, we targeted the unique arginyl-tRNA synthetase of its causative agent Trypanosoma cruzi. Among their many possible uses, naphthalene-derived fluorescent ligands, such as ANS and bis-ANS, may be employed in pharmacokinetic research. Although ANS and bis-ANS have become prominent fluorescent probes for protein characterization, the structural and spectroscopic characteristics of protein-ANS/bis-ANS complexes remain largely unknown.

View Article and Find Full Text PDF

Coronaviruses (CoVs) share key genomic elements critical for viral replication, suggesting the feasibility of developing therapeutics with efficacy across different viruses. In a previous work, we demonstrated the antiviral activity of the antipsychotic drug lurasidone against both SARS-CoV-2 and HCoV-OC43. In this study, our investigations on the mechanism of action of lurasidone suggested that the drug exhibits antiviral activity by targeting the papain-like protease (PL-Pro) of both viruses, and the Spike protein of SARS-CoV-2, thereby hampering both the entry and the viral replication.

View Article and Find Full Text PDF

Dengue virus circulation is on the rise globally, with increased epidemic activity in previously unaffected countries, including within Europe. In 2023, global dengue activity peaked, and Italy reported the highest number of dengue cases and local chains of transmission to date. By curating several sources of information, we introduce a novel data repository focused on dengue reporting in Italy.

View Article and Find Full Text PDF

Cotton (Gossypium hirsutum L.), a vital global cash crop, significantly impacts both the agricultural and industrial sectors, providing essential fiber for textiles and valuable byproducts such as cottonseed oil and animal feed. The cultivation of cotton supports millions of livelihoods worldwide, particularly in developing regions, making it a cornerstone of rural economies.

View Article and Find Full Text PDF

Crigler-Najjar syndrome is an ultra-rare monogenic recessive liver disease caused by gene mutations. Complete UGT1A1 deficiency results in severe unconjugated hyperbilirubinemia in newborns that, if not treated, may lead to brain damage and death. Treatment is based on intensive phototherapy, but its efficacy decreases with age, rendering liver transplantation the only curative option.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) is an essential source of antioxidants and a prime candidate for bioengineering experiments. Many studies have aimed to improve tomatoes using CRISPR/Cas9 technology; however, the success rate is limited due to the lack of efficient regeneration and genetic modification techniques.

View Article and Find Full Text PDF

This study sought to investigate the demographic and clinical characteristics of Sudanese men diagnosed with prostate cancer (PCa) to highlight differences in diagnosis among the three major ethnolinguistic groups. A total of 532 patients with confirmed PCa diagnosis through biopsy were enrolled from six medical centers in Sudan. The majority of patients, comprising 84.

View Article and Find Full Text PDF