8 results match your criteria: "Centre for Fundamental and Advanced Technical Research[Affiliation]"

This research aims to investigate the agglomeration processes of magnetoresponsive functionalized nanocluster suspensions in a magnetic field, as well as how these structures impact the behaviour of these suspensions in biomedical applications. The synthesis, shape, colloidal stability, and magnetic characteristics of PEG-functionalized nanoclusters are described in this paper. Experiments using TEM, XPS, dynamic light scattering (DLS), VSM, and optical microscopy were performed to study chain-like agglomeration production and its influence on colloidal behaviour in physiologically relevant suspensions.

View Article and Find Full Text PDF

Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications.

Micromachines (Basel)

October 2022

Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy "Victor Babes" Timisoara, P-ta Eftimie Murgu 2, RO-300041 Timisoara, Romania.

This study presents preliminary computational and experimental findings on two alternative permanent magnet configurations helpful for magnetic drug administration in vivo. A numerical simulation and a direct experimental measurement of the magnetic induction on the magnet system's surface were used to map the magnetic field. In addition, the ferrite-type (grade Y35) and permanent neodymium magnets (grade N52) to produce powerful magnetic forces were also examined analytically and quantitatively.

View Article and Find Full Text PDF

Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region.

View Article and Find Full Text PDF

The complicated abdominal aorta and its branches are a portion of the circulatory system prone to developing atherosclerotic plaque and aneurysms. These disorders are closely connected to the changing blood flow environment that the area’s complicated architecture produces (between celiac artery and iliac artery bifurcation); this phenomenon is widespread at arterial bifurcations. Based on computed tomography angiography (CTA) scans, this current work offers a numerical analysis of a patient-specific reconstruction of the abdominal aorta and its branches to identify and emphasize the most likely areas to develop atherosclerosis.

View Article and Find Full Text PDF

Dental adhesives are used in a wide range of applications, including to place direct composite restorations in frontal or posterior teeth. One of the most frequent causes for the failure of composite resin restorations is microleakages. The first aim of this work is to introduce a new type of self-etched dental adhesive doped with magnetic nanoparticles (MPs) synthetized in the laboratory.

View Article and Find Full Text PDF

The present study investigated the possibilities and feasibility of drug targeting for an arterial bifurcation lesion to influence the host healing response. A micrometer sized iron particle was used only to model the magnetic carrier in the experimental investigation (not intended for clinical use), to demonstrate the feasibility of the particle targeting at the lesion site and facilitate the new experimental investigations using coated superparamagnetic iron oxide nanoparticles. Magnetic fields were generated by a single permanent external magnet (ferrite magnet).

View Article and Find Full Text PDF

Helical type coronary bypass graft performance: Experimental investigations.

Biomed Mater Eng

July 2016

University of Medicine and Pharmacy "Victor Babes" Timisoara, Universitary Clinic "Bega", P-ta Eftimie Murgu 2, RO-300041, Timisoara, Romania.

Optimal graft design has been an objective of many researchers to find correlations between hemodynamics and graft failure. Compared to planar grafts, the helical graft configurations improve hemodynamic performance including the promotion of flow mixing and reduction of flow stagnation regions. In order to evaluate the advantages and disadvantages of the suggested helical type bypass graft model in comparison to a conventional bypass graft configuration, three experimental models were designed and evaluated.

View Article and Find Full Text PDF

The long-term success of arterial bypass surgery is often limited by the progression of intimal hyperplasia at the anastomosis between the graft and the native artery. The experimental models were manufactured from glass tubing with constant internal diameter of 8 mm, fashioned into a straight configuration and helical configuration. The aim of this study was to determine the three-dimensional flow structures that occur at the proximal anastomosis under pulsatile flow conditions, to investigate the changes that resulted from variations in the anastomosis angle and flow division, and to establishing the major differences between the straight and helical graft.

View Article and Find Full Text PDF