47 results match your criteria: "Centre for Functional and Surface Functionalized Glass[Affiliation]"

The impact of grinding on particle size, thermal behaviour, and sintering ability of yttrium aluminate glass microspheres with eutectic composition (76.8 mol % AlO and 23.2 mol % YO) was studied.

View Article and Find Full Text PDF

Introduction: The incorporation of trace elements such as strontium (Sr) and copper (Cu) in the composition of mesoporous bioactive glass (MBG) is widely known to enhance its biological functionality for bone tissue regeneration METHODS: Two MBG powders with the composition 80SiO-11CaO-5PO-xCuO/SrO, one doped with 4 mol.% of CuO, the second with 4 mol.% of SrO were blended in the weight ratios of Cu-MBG: Sr-MBG; 100:0, 70: 30, 50: 50, 30: 70 and 0:100 aiming at minimizing Cu to minimize the cytotoxicity of Cu while preserving its antimicrobial activity.

View Article and Find Full Text PDF

The pollution of wastewater with pharmaceuticals and endocrine-disrupting chemicals (EDCs) in populated areas poses a growing threat to humans and ecosystems. To address this serious problem, various one-dimensional (1D) hierarchical ZnO-based nanostructures inspired by Anelosimus eximius cobwebs were developed and successfully grown on a glass substrate through simple hydrothermal synthesis. The nanorods (nr) obtained during primary growth were chemically etched with KOH (ZnO-KOH), followed by the secondary growth of nano cobweb-like (ncw) structures using polyethyleneimine (ZnO).

View Article and Find Full Text PDF

The borosilicate 0106-B1-bioactive glass (BG) composition (in wt%: 37.5 SiO, 22.6 CaO, 5.

View Article and Find Full Text PDF

Single rock-like N-doped carbon monolith (ND-PFCM) was successfully constructed via nanocasting method. Phenol formaldehyde resin was taken as carbon source and nitrogen was incorporated in monoliths through NaNH activation. The synthesized monoliths were used for the removal of Pb (II) from aqueous solution.

View Article and Find Full Text PDF

The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment.

View Article and Find Full Text PDF

The development of intricated and interconnected porous mats is desired for many applications in biomedicine and other relevant fields. The mats that comprise the use of natural, bioactive, and biodegradable polymers are the focus of current research activities. In the present work, crosslinked fibers with improved characteristics were produced by incorporating 1,4-butanediol diglycidyl ether (BDDE) into a polymer formulation containing polycaprolactone (PCL), chitosan (CS), and κappa-carrageenan (κ-C).

View Article and Find Full Text PDF

Glasses activated with europium show promising potential for use in applications relating to photonics, in particular solid-state laser generation. In the current work, EuO incorporated gemanium borate glasses were developed and explored their potentiality towards lasing active medium by probing physical, structural, optical and lasing properties in detail. The physical and structural features of each glass indicated the presence of non-bridging oxygens (NBOs) and an enhancement in network stability on account of the inclusion of europium ions into the GeO glass network.

View Article and Find Full Text PDF

Devitrite (NaCaSiO) phase dominated nanostructured 45S5 bioactive glass: exploring its structural and biological properties.

Biomed Mater

February 2024

National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India.

This research study is primarily centred around calcination temperature and time influence on phase formation in bioactive glasses (BGs). In the present study, BG with a nominal composition of 45S5 was synthesized through the sol-gel process. The developed BGs then underwent heat treatment for various sintering durations and temperatures.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is widely acknowledged in bone tissue engineering due to its mesoporous structure, large surface area, and bioactivity. Recent research indicates that introduction of metallic ions has beneficial impacts on bone metabolism and angiogenesis. Thus, the features of MBG can be modified by incorporating combinations of ions, such as magnesium (Mg) and copper (Cu), which can play a considerable role in bone formation, influencing angiogenesis, osteogenesis, as well as antibacterial properties.

View Article and Find Full Text PDF

Herein, the efficacy of WO-promoted CeO-SiO and CeO-ZrO mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO, CeO-ZrO, CeO-SiO, WO/CeO, WO/CeO-ZrO, and WO/CeO-SiO catalysts were characterized by X-ray diffraction (XRD), N adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

LED-driven photo-Fenton process for micropollutant removal by nanostructured magnetite anchored in mesoporous silica.

J Environ Manage

January 2024

CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.

The presence of organic micropollutants in water bodies represents a threat to living organisms and ecosystems due to their toxicological effects and recalcitrance in conventional wastewater treatments. In this context, the application of heterogeneous photo-Fenton based on magnetite nanoparticles supported on mesoporous silica (SBA15) is proposed to carry out the non-specific degradation of the model compounds ibuprofen, carbamazepine, hormones, bisphenol A and the dye ProcionRed®. The operating conditions (i.

View Article and Find Full Text PDF

A porous membrane was developed through alkali activation of pharmaceutical boro-alumino-silicate glass powders suspended in diluted NaOH and KOH aqueous solutions (2.5 M). A consolidated porous structure was obtained by the binding of unreacted particles mediated by a surface gel, developed upon drying of the suspensions and their curing at 40 °C for 14 days.

View Article and Find Full Text PDF

The mechanical qualities of AZ31B magnesium alloys make them a promising material for biodegradable metallic implants. However, rapid degradation limits the application of these alloys. In the present study, 58S bioactive glasses were synthesized using the sol-gel method and several polyols such as glycerol, ethylene glycol, and polyethylene glycol, were used to improve the sol stability and to control the degradation of AZ31B.

View Article and Find Full Text PDF

Functional Two-Dimensional Materials for Bioelectronic Neural Interfacing.

J Funct Biomater

January 2023

Department of Solid-Sate Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium.

Realizing the neurological information processing by analyzing the complex data transferring behavior of populations and individual neurons is one of the fast-growing fields of neuroscience and bioelectronic technologies. This field is anticipated to cover a wide range of advanced applications, including neural dynamic monitoring, understanding the neurological disorders, human brain-machine communications and even ambitious mind-controlled prosthetic implant systems. To fulfill the requirements of high spatial and temporal resolution recording of neural activities, electrical, optical and biosensing technologies are combined to develop multifunctional bioelectronic and neuro-signal probes.

View Article and Find Full Text PDF

The development of biocompatible nanocomposite hydrogels with effective wound healing/microbicidal properties is needed to bring out their distinguished characteristics in clinical applications. The positive interaction between graphene oxide/reduced graphene oxide (GO/rGO) and hydrogels and aloe vera gel represents a strong strategy for the advancement of therapeutic approaches for wound healing. In this study, the synthesis, characterization, and angiogenic properties of graphene-based nanocomposite gels have been corroborated and substantiated through several in vitro and in vivo assays.

View Article and Find Full Text PDF

Stainless Steel Foil-Based Label-Free Modular Thin-Film Electrochemical Detector for Solvent Identification.

Micromachines (Basel)

December 2022

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.

Most organic solvents are colorless liquids, usually stored in sealed containers. In many cases, their identification depends on the appropriate description on the container to prevent mishandling or mixing with other materials. Although modern laboratories rely heavily on identification technologies, such as digitized inventories and spectroscopic methods (e.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is an extensively studied biomaterial used for the healing of bone defects. Its biological applications can be tailored by introducing metallic ions, such as strontium (Sr) and copper (Cu), which can enhance its functionalities, including osteogenetic, angiogenetic and antibacterial functionalities. In this study, Cu and Sr ions were co-doped (ratio 1:1) with x = 0.

View Article and Find Full Text PDF

Electrochromic Device Demonstrator from Household Materials.

J Chem Educ

October 2022

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.

Electrochromism encompasses reversible changes of material's optical properties (color, opacity) under the influence of an external electric current or applied voltage. The effect has been known for decades, but its importance continues to grow due to the rapid development of smart systems and the accompanying demand to build devices that consume less power. Most commercial electrochromic devices (ECDs) require sophisticated chemicals and advanced material preparation techniques.

View Article and Find Full Text PDF

'Silica-defective glasses', combined with a silicone binder, have been already shown as a promising solution for the manufacturing of glass-ceramics with complex geometries. A fundamental advantage is the fact that, after holding glass powders together from room temperature up to the firing temperature, the binder does not completely disappear. More precisely, it converts into silica when heat-treated in air.

View Article and Find Full Text PDF

A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn Ions in a Solution.

Nanomaterials (Basel)

October 2022

Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.

Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes.

View Article and Find Full Text PDF

Air-stable Ni nanoparticles (with particle size ∼ 11 nm) supported on reduced graphene oxide [Ni(0)@RGO] was prepared by a simple and easy procedure. We previously described the Kumada-Corriu C-C cross-coupling reaction between iodo-arenes and Grignard reagents with Ni(0)RGO as a stable and efficient catalyst. This Ni(0)RGO catalyst gave an excellent yield (92%) and good recyclability (up to the 5 cycle).

View Article and Find Full Text PDF

The present COVID-19 emergency has dramatically increased the demand for pharmaceutical containers, especially vials. End-of-life containers, however, cannot be easily recycled in the manufacturing of new articles. This paper presents some strategies for upcycling of pharmaceutical glass into various porous ceramics.

View Article and Find Full Text PDF

Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications.

Int J Biol Macromol

July 2022

Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany. Electronic address:

We report the successful preparation and characterization of chitosan-Zn complex (ChiZn) in the form of films, intended to enhance the biological performance of chitosan by the presence of Zn as antibacterial agent and biologically active ion. The influence of Zn chelation on morphology and structure of chitosan was assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and infrared spectroscopy. The biodegradability study of ChiZn showed a sustained release of Zn up to 2 mg/mL.

View Article and Find Full Text PDF