117 results match your criteria: "Centre for Environmental Contaminants Research[Affiliation]"

Hypersaline sediments derived from poor land management or the decommissioning of large-scale salt production contribute to the long-term degradation of aquatic environments. Obstacles impeding remediation of these environments include salt crusts restricting benthic recolonisation, hypersalinity-induced toxicity to organisms, and disruption of biogeochemical cycles. Remediation often focuses on engineered solutions, despite sediment-biota interactions often playing a crucial role in improving long-term remediation and restoration of contaminated areas.

View Article and Find Full Text PDF

The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging.

View Article and Find Full Text PDF

Intermittent, fluctuating and pulsed contaminant discharges may result in organisms receiving highly variable toxicant exposures. This study investigated the toxicity of continuous and pulsed exposures of a complex, neutralised drainage water (NDW) and dissolved copper-spiked dilute NDW to the green alga, Pseudokirchneriella subcapitata. The effects of single pulses of between 1 and 48 h duration and continuous exposures (72 h) on algal growth rate inhibition were compared on a time-averaged concentration (TAC) basis.

View Article and Find Full Text PDF

Barium is present at elevated concentrations in oil and gas produced waters, and there is no international water quality guideline value to assess the potential risk of adverse effects to aquatic biota. Sulfate concentration largely controls the solubility of barium in aquatic systems, with insoluble barium sulfate (barite) assumed to be less bioavailable and less toxic than dissolved barium. We exposed aquatic biota to dissolved barium only and to a mixture of dissolved and precipitated barium.

View Article and Find Full Text PDF

Intermittent, fluctuating and pulsed contaminant discharges may result in organisms receiving highly variable contaminant exposures. This study investigated the effects of dissolved copper pulse concentration and exposure duration on the toxicity to two freshwater green algae species. The effects of single copper pulses of between 1 and 48 h duration and continuous exposures (72 h) on growth rate inhibition of Pseudokirchneriella subcapitata and Chlorella sp.

View Article and Find Full Text PDF

Environmental toxicologists and chemists have been crucial to evaluating the chemical fate and toxicological effects of environmental contaminants, including chlorinated pesticides, before and after Rachel Carson's publication of Silent Spring in 1962. Like chlorinated pesticides previously, global climate change is widely considered to be one of the most important environmental challenges of our time. Over the past 30 yr, climate scientists and modelers have shown that greenhouse gases such as CO and CH cause radiative forcing (climate forcing) and lead to increased global temperatures.

View Article and Find Full Text PDF

Aquatic live animal radiotracing studies for ecotoxicological applications: Addressing fundamental methodological deficiencies.

J Environ Radioact

November 2017

Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford M5 4WT, United Kingdom.

The use of live animal gamma radioisotope tracer techniques in the field of ecotoxicology allows laboratory studies to accurately monitor contaminant biokinetics in real time for an individual organism. However, methods used in published studies for aquatic organisms are rarely described in sufficient detail to allow for study replication or an assessment of the errors associated with live animal radioanalysis to be identified. We evaluate the influence of some important methodological deficiencies through an overview of the literature on live aquatic animal radiotracer techniques and through the results obtained from our radiotracer studies on four aquatic invertebrate species.

View Article and Find Full Text PDF

Uncovering hidden heterogeneity: Geo-statistical models illuminate the fine scale effects of boating infrastructure on sediment characteristics and contaminants.

Mar Pollut Bull

June 2017

Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, Australia; Sydney Institute of Marine Science, Mosman, Australia.

Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields.

View Article and Find Full Text PDF

Many benthic communities within estuarine ecosystems are highly degraded due to the close proximity of urban and industrial contamination sources. The maintenance of recolonised, healthy ecosystems following remediation is a challenge, and better techniques are required for monitoring their progressive recovery. Rates of ecosystem recovery are influenced by the changes in the concentrations and forms of contaminants, the sensitivity of recolonising organisms to bioavailable contaminants, and a range of abiotic and biotic factors influencing the exposure of organisms to the contamination.

View Article and Find Full Text PDF

The uptake, depuration, and organ distribution of the radioisotope Cd were used to explore the internal kinetics of this nonessential metal following accumulation from waterborne cadmium by the freshwater decapod crustacean Macrobrachium australiense. Short- (6 h) and long-term (7 to 14 days) exposures to the radioisotope in solutions of 0.56 μg Cd/L were followed by depuration in metal- and isotope-free water for up to 21 days.

View Article and Find Full Text PDF

The authors' reply.

Environ Toxicol Chem

October 2016

School of Biological Sciences, University of Plymouth, Plymouth, United Kingdom.

View Article and Find Full Text PDF

Fluctuations in concentrations of bioavailable metals occur in most natural waters. In situ measurements are desirable to predict risks of adverse effects to aquatic organisms. We evaluated Diffusive Milli-Gels (DMG), a new in situ passive sampler, for assessing the bioavailability and toxicity of copper in waters exhibiting a wide range of characteristics.

View Article and Find Full Text PDF

Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp.

View Article and Find Full Text PDF

Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish.

View Article and Find Full Text PDF

Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite.

View Article and Find Full Text PDF

The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction).

View Article and Find Full Text PDF

Resuspension of surficial sediments is considered a key process influencing bioaccumulation of metals in filter-feeders in the contaminated Sydney Harbour estuary (Australia). However, previous investigations were unable to establish a significant relationship between metals in sediments or suspended particulate matter (SPM) and oyster tissue concentrations. This study used a 60-d laboratory mesocosm experiment to expose Sydney rock oysters, Saccostrea glomerata, to a natural range of SPM concentrations with different SPM-metal concentrations.

View Article and Find Full Text PDF

The burrowing and feeding activities of benthic organisms can alter metal speciation in sediments and affect an organisms' exposure to metals. Recently, the performance of the in situ technique of diffusive gradients in thin films (DGT) for predicting metal bioavailability has been investigated in response to the increasing demand of considering contaminant bioavailability in sediment quality assessments. In this study, we test the ability of the DGT technique for predicting the metal bioavailability in clean and contaminated sediments that are being subjected to varying degrees of sediments disturbance: low bioturbation (bivalve Tellina deltoidalis alone) and high bioturbation (bivalve and actively burrowing amphipod, Victoriopisa australiensis).

View Article and Find Full Text PDF

Information on the biological responses of polyploid animals towards environmental contaminants is scarce. This study aimed to compare reproductive axis-related gene expressions in the brain, plasma biochemical responses, and the liver and gill histopathological alterations in diploid and triploid full-sibling juvenile African catfish (Clarias gariepinus). Fish were exposed for 96 h to one of the two waterborne phenanthrene (Phe) concentrations [mean measured (SD): 6.

View Article and Find Full Text PDF

Pharmaceuticals can enter freshwater and affect aquatic ecosystem health. Although toxicity tests have been carried out for the commonly used pharmaceuticals, evidence-based water quality guidelines have not been derived. High-reliability water quality guideline values have been derived for 4 pharmaceuticals-carbamazepine, diclofenac, fluoxetine, and propranolol-in freshwaters using a Burr type III distribution applied to species sensitivity distributions of chronic toxicity data.

View Article and Find Full Text PDF

Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis.

View Article and Find Full Text PDF

The use of diffusive gradients in thin films (DGT) for predicting metal bioavailability was investigated by exposing the bivalve Tellina deltoidalis to an identical series of metal-contaminated sediments deployed simultaneously in the field and laboratory. To understand the differences in metal exposure occurring between laboratory- and field-based bioassays, we investigated changes in metal fluxes to DGT probes in sediments and in metal concentrations and partitioning to porewaters and overlying waters. DGT-metal fluxes (Cu, Pb, and Zn) were lower in the overlying waters of most field bioassays compared to the laboratory, causing differences in Pb and Zn bioaccumulation between bivalves exposed to laboratory and field conditions.

View Article and Find Full Text PDF

On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae.

Aquat Toxicol

November 2015

Centre for Environmental Contaminants Research, CSIRO Land and Water Flagship, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

The factors affecting the chronic (72-h) toxicity of three nanoparticulate (10-34nm) and one micron-sized form of CeO2 to the green alga, Pseudokirchneriella subcapitata were investigated. To characterise transformations in solution, hydrodynamic diameters (HDD) were measured by dynamic light scatter, zeta potential values by electrophoretic mobility, and dissolution by equilibrium dialysis. The protective effects of humic and fulvic dissolved organic carbon (DOC) on toxicity were also assessed.

View Article and Find Full Text PDF

Past studies disagree on the extent to which dissolved or dietary uptake contribute to metal bioaccumulation in the filter-feeding Sydney rock oyster (Saccostrea glomerata) in urbanized estuaries. Although most data support the assumption that fine sediments are a major route of metal uptake in these bivalves, some studies based in the Sydney estuary, Australia, have indicated a poor correlation. In the present study, seawater, sediment and microalgae were radiolabelled with (65)Zn tracer and exposed to S.

View Article and Find Full Text PDF

Sediment Contaminants and Infauna Associated with Recreational Boating Structures in a Multi-Use Marine Park.

PLoS One

May 2016

Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia; Sydney Institute of Marine Sciences, Mosman, Australia.

Multi-use marine parks achieve conservation through spatial management of activities. Zoning of marine parks in New South Wales, Australia, includes high conservation areas and special purpose zones (SPZ) where maritime activities are concentrated. Although such measures geographically constrain anthropogenic impacts, we have limited understanding of potential ecological effects.

View Article and Find Full Text PDF