4 results match your criteria: "Centre for Discovery Brain Sciences at the University of Edinburgh[Affiliation]"

Background: Maintaining synaptic health is essential for normal neurological function, yet neurodegenerative diseases like Alzheimer's disease and Progressive Supranuclear Palsy (PSP) exhibit synaptic loss. In these conditions, synaptic loss precedes neuronal degeneration, and the degree of synaptic loss correlates closely with the severity of clinical symptoms. Both Aβ, which accumulates in amyloid plaques in AD, and tau protein which accumulates intracellularly in tauopathies, including AD and PSP, accumulate within synaptic terminals.

View Article and Find Full Text PDF

Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown.

View Article and Find Full Text PDF

Neurogranin (Ng), a post-synaptic protein involved in memory formation, has been investigated as a biomarker in the cerebrospinal fluid (CSF) in Alzheimer's disease (AD) and ageing. CSF Ng levels are elevated in AD relative to healthy controls and correlate with cognition; however, few studies have focused on Ng abundance in the brain. Synapse loss in the brain correlates closely with cognitive decline in AD making synaptic biomarkers potentially important for tracking disease progression, but the links between synaptic protein changes in CSF and brain remain incompletely understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study looks at why older people might get Alzheimer's or have trouble thinking as they age.
  • Researchers examined brains from different age groups and conditions to see how synapses (the connections between brain cells) change.
  • They found that healthy brains had better synaptic health and fewer problems compared to those with cognitive decline or Alzheimer's, which suggests that strong brain connections help with thinking as we get older.
View Article and Find Full Text PDF