795 results match your criteria: "Centre for Discovery Brain Sciences[Affiliation]"
Hum Mol Genet
January 2025
Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
Spinal Muscular Atrophy is an autosomal dominant disease caused by mutations and deletions within the SMN1 gene, with predominantly childhood onset. Although primarily a motor neuron disease, defects in non-neuronal tissues are described in both patients and mouse models. Here, we have undertaken a detailed study of the heart in the Smn2B/- mouse models of SMA, and reveal a thinning of the ventriclar walls as previously described in more severe mouse models of SMA.
View Article and Find Full Text PDFNat Neurosci
January 2025
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.
Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.
Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.
Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.
Methods
December 2024
University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH164TJ, United Kingdom. Electronic address:
5-Methylcytosine (m5C) plays a pivotal role in various RNA metabolic processes, including RNA localization, stability, and translation. Current high-throughput sequencing technologies for m5C site identification are resource-intensive in terms of cost, labor, and time. As such, there is a pressing need for efficient computational approaches.
View Article and Find Full Text PDFCereb Cortex
December 2024
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
The cerebral cortex is critical for advanced cognitive functions and relies on a vast network of neurons to carry out its highly intricate neural tasks. Generating cortical neurons in accurate numbers hinges on cell signaling orchestrated by primary cilia to coordinate the proliferation and differentiation of cortical stem cells. While recent research has shed light on multiple ciliary roles in corticogenesis, specific mechanisms downstream of cilia signaling remain largely unexplored.
View Article and Find Full Text PDFElife
December 2024
Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.
A major challenge in the stem cell biology field is the ability to produce fully functional cells from induced pluripotent stem cells (iPSCs) that are a valuable resource for cell therapy, drug screening, and disease modelling. Here, we developed a novel inducible CRISPR-mediated activation strategy (iCRISPRa) to drive the expression of multiple endogenous transcription factors (TFs) important for in vitro cell fate and differentiation of iPSCs to haematopoietic progenitor cells. This work has identified a key role for IGFBP2 in developing haematopoietic progenitors.
View Article and Find Full Text PDFNat Neurosci
January 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, UK. Electronic address:
cfos is an immediate early gene commonly used to identify neuronal activation. After loud sound stimulation, neurons in the inferior colliculus are activated and cFos is expressed in the nucleus. Here, we present a protocol for quantifying neuronal activity in response to auditory stimulation using cFos immunostaining in the mouse inferior colliculus.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, United Kingdom.
. Accurate seizure prediction could prove critical for improving patient safety and quality of life in drug-resistant epilepsy. While deep learning-based approaches have shown promising performance using scalp electroencephalogram (EEG) signals, the incomplete understanding and variability of the preictal state imposes challenges in identifying the optimal preictal period (OPP) for labeling the EEG segments.
View Article and Find Full Text PDFNature
November 2024
Princeton Neuroscience Institute, Princeton, NJ, USA.
Cell Rep
December 2024
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Due to the importance of 4R tau (with four microtubule-binding-repeat domains) in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in induced pluripotent stem cell (iPSC)-derived neurons, which express very low levels of 4R tau. To address this, we have developed a panel of isogenic iPSC lines carrying MAPT splice-site mutations, S305S, S305I, or S305N, derived from four different donors. All mutations significantly increase 4R tau expression in iPSC neurons and astrocytes.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.
Although in humans, the brain fails to heal after an injury, young zebrafish are able to restore tissue structural integrity in less than 24 h, thanks to the mechanical action of microglia.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia. Electronic address:
Amino acid substitutions in the kinase domain of the human CSF1R protein are associated with autosomal dominant adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). To model the human disease, we created a disease-associated mutation (Glu631Lys; E631K) in the mouse Csf1r locus. Previous analysis demonstrated that heterozygous mutation (Csf1r) had a dominant inhibitory effect on CSF1R signaling in vitro and in vivo but did not recapitulate human disease pathology.
View Article and Find Full Text PDFElife
November 2024
EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom.
The concept that dimeric protein complexes in synapses can sequentially replace their subunits has been a cornerstone of Francis Crick's 1984 hypothesis, explaining how long-term memories could be maintained in the face of short protein lifetimes. However, it is unknown whether the subunits of protein complexes that mediate memory are sequentially replaced in the brain and if this process is linked to protein lifetime. We address these issues by focusing on supercomplexes assembled by the abundant postsynaptic scaffolding protein PSD95, which plays a crucial role in memory.
View Article and Find Full Text PDFNat Rev Dis Primers
November 2024
Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
Rett syndrome (RTT) is a severe, progressive, neurodevelopmental disorder, which affects predominantly females. In most cases, RTT is associated with pathogenic variants in MECP2. MeCP2, the protein product of MECP2, is known to regulate gene expression and is highly expressed in the brain.
View Article and Find Full Text PDFElife
November 2024
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.
Interactions between excitatory and inhibitory neurons are critical to computations in cortical circuits but their organization is difficult to assess with standard electrophysiological approaches. Within the medial entorhinal cortex, representation of location by grid and other spatial cells involves circuits in layer 2 in which excitatory stellate cells interact with each other via inhibitory parvalbumin expressing interneurons. Whether this connectivity is structured to support local circuit computations is unclear.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK.
Activating autophagy may be therapeutically beneficial, and we have previously shown that azathioprine (AZA), an immunomodulatory drug, induces autophagy. Here, we evaluated the induction of autophagy by the thiopurines AZA, mercaptopurine (6-MP) and thioguanine (6-TG) in THP-1 macrophages and investigated the mechanism of action in the context of this cellular process. The cytotoxicity of thiopurines was evaluated using an LDH assay.
View Article and Find Full Text PDFImmunol Rev
October 2024
BARLO Multiple Sclerosis Centre and Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.
Myelin is the membrane surrounding neuronal axons in the central nervous system (CNS), produced by oligodendrocytes to provide insulation for electrical impulse conduction and trophic/metabolic support. CNS dysfunction occurs following poor development of myelin in infancy, myelin damage in neurological diseases, and impaired regeneration of myelin with disease progression in aging. The lack of approved therapies aimed at supporting myelin health highlights the critical need to identify the cellular and molecular influences on oligodendrocytes.
View Article and Find Full Text PDFBrain Commun
October 2024
Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.
This scientific commentary refers to 'Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex', by Lenz . (https://doi.org/10.
View Article and Find Full Text PDFbioRxiv
October 2024
Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA.
Myelin, along with the oligodendrocytes (OLs) that produce it, is essential for proper central nervous system (CNS) function in vertebrates. Although the accurate targeting of myelin to axons and its maintenance are critical for CNS performance, the molecular pathways that regulate these processes remain poorly understood. Through a combination of zebrafish genetics, mouse models, and primary OL cultures, we found FBXW7, a recognition subunit of an E3 ubiquitin ligase complex, is a regulator of adult myelination in the CNS.
View Article and Find Full Text PDFBrain Neurosci Adv
October 2024
Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
Using genetically modified animals to model neurodevelopmental conditions helps better our understanding of biology underlying these conditions. Animal research has unique characteristics not shared with clinical research, meaning systematic review methods must be adapted to this context. We aim to evaluate the quantity, characteristics, and reporting quality of systematic reviews which synthesise research using genetically modified animals to model neurodevelopmental conditions.
View Article and Find Full Text PDFBrain Neurosci Adv
October 2024
Department of Psychology, Edge Hill University, Ormskirk, UK.
On November 20-21 2023, the Royal Society in London hosted a landmark scientific meeting led by Professor Wickliffe C Abraham, Professor Timothy VP Bliss, Professor Graham L Collingridge, and Professor Richard GM Morris. The conference, commemorating the 50th anniversary of the discovery of Long-Term Potentiation, focused on discussing the latest research and developments in the field of synaptic plasticity. We have invited former presidents of the British Neuroscience Association, Professor Graham Collingridge CBE FRS and Professor Richard Morris CBE FRS, for interviews.
View Article and Find Full Text PDFLife Sci Alliance
January 2025
Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK.
Wound closure after brain injury is crucial for tissue restoration but remains poorly understood at the tissue level. We investigated this process using in vivo observations of larval zebrafish brain injury. Our findings show that wound closure occurs within the first 24 h through global tissue contraction, as evidenced by live-imaging and drug inhibition studies.
View Article and Find Full Text PDFFuture Healthc J
September 2024
Addenbrookes Hospital, Cambridge University Hospitals, Hills Road, Cambridge, UK.
The rapid advancement and widespread adoption of artificial intelligence (AI) has ushered in a new era of possibilities in healthcare, ranging from clinical task automation to disease detection. AI algorithms have the potential to analyse medical data, enhance diagnostic accuracy, personalise treatment plans and predict patient outcomes among other possibilities. With a surge in AI's popularity, its developments are outpacing policy and regulatory frameworks, leading to concerns about ethical considerations and collaborative development.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK. Electronic address: