17 results match your criteria: "Centre de Recerca en Agrigenòmica (Consorci CSIC-IRTA-UAB-UB)[Affiliation]"

Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance.

Plant Sci

June 2021

Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071, León, Spain. Electronic address:

Lodging is one of the causes of maize (Zea mays L.) production losses worldwide and, at least, the resistance to stalk lodging has been positively correlated with stalk strength. In order to elucidate the putative relationship between cell wall, stalk strength and lodging resistance, twelve maize inbreds varying in rind penetration strength and lodging resistance were characterized for cell wall composition and structure.

View Article and Find Full Text PDF

African swine fever virus does not express viral microRNAs in experimentally infected pigs.

BMC Vet Res

September 2018

Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.

Background: African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), a re-expanding devastating and highly lethal hemorrhagic viral disease. microRNAs (miRNAs) are a new class of small non-coding RNAs that regulate gene expression post-transcriptionally. The discovery of virus specific miRNAs has increased both in number and importance in the past few years.

View Article and Find Full Text PDF

Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed.

PLoS One

June 2018

Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain.

One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0-3 Mb, for body weight, on SSC2, 3-9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights.

View Article and Find Full Text PDF

The FABP4 and FABP5 genes, coding for fatty acid transport proteins, have long been studied as positional candidate genes for SSC4 QTL affecting fat deposition and composition traits in pigs. Polymorphisms in these genes, FABP4:g.2634_2635insC and FABP5:g.

View Article and Find Full Text PDF

Copy number variations (CNVs) are important genetic variants complementary to SNPs, and can be considered as biomarkers for some economically important traits in domestic animals. In the present study, a genomic analysis of porcine CNVs based on next-generation sequencing data was carried out to identify CNVs segregating in an Iberian x Landrace backcross population and study their association with fatty acid composition and growth-related traits. A total of 1,279 CNVs, including duplications and deletions, were detected, ranging from 106 to 235 CNVs across samples, with an average of 183 CNVs per sample.

View Article and Find Full Text PDF

Integration of liver gene co-expression networks and eGWAs analyses highlighted candidate regulators implicated in lipid metabolism in pigs.

Sci Rep

April 2017

Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.

In the present study, liver co-expression networks and expression Genome Wide Association Study (eGWAS) were performed to identify DNA variants and molecular pathways implicated in the functional regulatory mechanisms of meat quality traits in pigs. With this purpose, the liver mRNA expression of 44 candidates genes related with lipid metabolism was analysed in 111 Iberian x Landrace backcross animals. The eGWAS identified 92 eSNPs located in seven chromosomal regions and associated with eight genes: CROT, CYP2U1, DGAT1, EGF, FABP1, FABP5, PLA2G12A, and PPARA.

View Article and Find Full Text PDF

Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics.

Mamm Genome

April 2017

Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040, Madrid, Spain.

Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle.

View Article and Find Full Text PDF

Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits.

Anim Genet

October 2016

Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Campus UAB, Bellaterra, 08193, Barcelona, Spain.

APOA2 is a protein implicated in triglyceride, fatty acid and glucose metabolism. In pigs, the APOA2 gene is located on pig chromosome 4 (SSC4) in a QTL region affecting fatty acid composition, fatness and growth traits. In this study, we evaluated APOA2 as a candidate gene for meat quality traits in an Iberian × Landrace backcross population.

View Article and Find Full Text PDF

Respiratory processes in non-photosynthetic plastids.

Front Plant Sci

August 2015

Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.

Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied.

View Article and Find Full Text PDF

Background: In previous studies on an Iberian x Landrace cross, we have provided evidence that supported the porcine ELOVL6 gene as the major causative gene of the QTL on pig chromosome 8 for palmitic and palmitoleic acid contents in muscle and backfat. The single nucleotide polymorphism (SNP) ELOVL6:c.-533C > T located in the promoter region of ELOVL6 was found to be highly associated with ELOVL6 expression and, accordingly, with the percentages of palmitic and palmitoleic acids in longissimus dorsi and adipose tissue.

View Article and Find Full Text PDF

Background: Fat content and fatty acid composition in swine are becoming increasingly studied because of their effect on sensory and nutritional quality of meat. A QTL (quantitative trait locus) for fatty acid composition in backfat was previously detected on porcine chromosome 8 (SSC8) in an Iberian x Landrace F2 intercross. More recently, a genome-wide association study detected the same genomic region for muscle fatty acid composition in an Iberian x Landrace backcross population.

View Article and Find Full Text PDF

Background: Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans.

View Article and Find Full Text PDF

Background: In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group).

View Article and Find Full Text PDF

DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

PLoS One

July 2014

Department of Animal Genetics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Bellaterra, Spain ; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.

Background: Real-time quantitative PCR (qPCR) is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available.

View Article and Find Full Text PDF

Suppressive subtractive hybridization libraries from oviduct at 62 h post-mating of two lines of rabbits divergently selected for uterine capacity were generated to identify differentially expressed genes. A total of 438 singletons and 126 contigs were obtained by cluster assembly and sequence alignment of 704 expressed sequence tags (ESTs), of which 54% showed homology to known proteins of the non-redundant NCBI databases. Differential screening by dot blot validated 71 ESTs, of which 47 showed similarity to known genes.

View Article and Find Full Text PDF

Background: New advances in high-throughput technologies have allowed for the massive analysis of genomic data, providing new opportunities for the characterization of the transcriptome architectures. Recent studies in pigs have employed RNA-Seq to explore the transcriptome of different tissues in a reduced number of animals. The main goal of this study was the identification of differentially-expressed genes in the liver of Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition using RNA-Seq.

View Article and Find Full Text PDF

Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase.

Mol Plant

July 2012

Laboratori de Genetica Molecular Vegetal, Centre de Recerca en AgriGenomica (CRAG), Consorci CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), Barcelona, Spain.

Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition.

View Article and Find Full Text PDF