140 results match your criteria: "Centre de Genetique Moleculaire du CNRS[Affiliation]"

Background Information: The CBK1 gene of Saccharomyces cerevisiae encodes a protein kinase that is a member of the NDR (nuclear Dbf2-related) family of protein kinases, which are involved in morphogenesis and cell proliferation. Previous studies have shown that deletion of CBK1 leads to a loss of polarity and the formation of large aggregates of cells. This aggregation phenotype is due to the loss of the daughter cell-specific accumulation of the transcription factor Ace2p, which is responsible for the transcription of genes whose products are necessary for the final separation of the mother and the daughter at the end of cell division.

View Article and Find Full Text PDF

The Avi.groEL intron of Azotobacter vinelandii, which interrupts the termination codon of the groEL gene, is shown to belong to a monophyletic subset of bacterial group II introns that share a large insertion at their 5' extremity and a peculiar genetic localization. Some of these introns are inserted within, right next to, or very close to, a stop codon while others are located immediately 3' of, or close to, an initiation codon.

View Article and Find Full Text PDF

In this study, a set of 80 completely sequenced procaryotic genomes has been analysed by an alignment-free method, namely the expectancy-rectified frequency of bigrams or 2-tuples, representing the 16 combinations of A, T, G, C. It demonstrates that all genomes exhibit periodic oscillations of their nucleotide sequence, with a period close to 11 phosphodiester bonds, and resembling in shape an exponentially dampened sinusoid at the distance from 5 to 49 bonds. Interestingly, the amplitude of nucleotide oscillation (but not the period) can differ drastically from one species to another.

View Article and Find Full Text PDF

Recent advances in fluorescent microscopy have revealed the non-random organization of chromosomes in bacterial cells. In Escherichia coli, segments included in two large regions show similar localization patterns allowing the definition of two macrodomains centered, respectively, on the centromere-like site migS (the Ori domain) and the replication terminus (the Ter domain). A genetic system measuring long distance DNA interactions confirmed the macrodomain organization of the chromosome and revealed the existence of two additional macrodomains flanking the Ter domain.

View Article and Find Full Text PDF

Erwinia Virulence Factor (Evf) has been identified in Erwinia carotovora carotovora 15 (Ecc15) as a virulence factor that promotes colonization of the Drosophila larval gut and provokes the triggering of a systemic immune response. Here we have analysed how Evf promotes persistence and colonization of bacteria inside the larval gut. Erwinia evf mutants do not persist in immune-deficient Drosophila, indicating that Evf does not act by counteracting immunity.

View Article and Find Full Text PDF

The Drosophila host defense against gram-negative bacteria is mediated by the Imd pathway upon sensing of peptidoglycan by the peptidoglycan recognition protein (PGRP)-LC. Here we report a functional analysis of PGRP-LB, a catalytic member of the PGRP family. We show that PGRP-LB is a secreted protein regulated by the Imd pathway.

View Article and Find Full Text PDF

RmInt1 is a mobile group II intron which interrupts ISRm2011-2, another mobile element from the bacterium Sinorhizobium meliloti. Ribozyme constructs derived from intron RmInt1 self-splice in vitro when incubated under permissive conditions, but the excised intron and ligated exons are largely replaced by unconventional products. These include a slightly shorter, 5'-end truncated 3' exon, truncated variants of the linear and lariat forms of the intron-3' exon reaction intermediate, as well as presumably circular molecules derived from the latter.

View Article and Find Full Text PDF

In order to address the question of the conservation of posterior growth mechanisms in bilaterians, we have studied the expression patterns of the orthologues of the genes caudal, even-skipped, and brachyury in the annelid Platynereis dumerilii. Annelids belong to the still poorly studied third large branch of the bilaterians, the lophotrochozoans, and have anatomic and developmental characteristics, such as a segmented body plan, indirect development through a microscopic ciliated larva, and building of the trunk through posterior addition, which are all hypothesized by some authors (including us) to be present already in Urbilateria, the last common ancestor of bilaterians. All three genes are shown to be likely involved in the building of the anteroposterior axis around the slit-like amphistomous blastopore as well as in the patterning of the terminal anus-bearing piece of the body (the pygidium).

View Article and Find Full Text PDF

Recent developments in fluorescence microscopy have shown that bacterial chromosomes have a defined spatial arrangement that preserves the linear order of genes on the genetic map. These approaches also revealed that large portions of the chromosome in Escherichia coli or Bacillus subtilis are concentrated in the same cellular space, suggesting an organization as large regions defined as macrodomains. In E.

View Article and Find Full Text PDF

Genomic mitochondrial intron deletion occurs frequently during the reversion of mitochondrial intronic mutations in Saccharomyces cerevisiae. The multiplicity as well as the apparent polarity of intron deletion led us to propose the implication of reverse transcription in this process. The two first introns of the COX1 (cytochrome oxidase I) gene, ai1 and ai2, are known to be homologous to viral reverse transcriptase and to encode such activity.

View Article and Find Full Text PDF

The translation elongation factor EF-Tu is a GTPase that delivers amino-acylated tRNAs to the ribosome during the elongation step of translation. EF-Tu/GDP is recycled by the guanine nucleotide exchange factor EF-Ts. Whereas EF-Ts is lacking in S.

View Article and Find Full Text PDF

Topological insulators inhibit diffusion of transcription-induced positive supercoils in the chromosome of Escherichia coli.

Mol Microbiol

January 2005

Centre de Génétique Moléculaire du CNRS, Bât. 26, 1 Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France and Centre de Biophysique Moléculaire du CNRS, Avenue Ch. Sadron, F-45071 Orléans, France.

The double helical nature of DNA implies that progression of transcription machinery that cannot rotate easily around the DNA axis creates waves of positive supercoils ahead of it and negative supercoils behind it. Using topological reporters that detect local variations in DNA supercoiling, we have characterized the diffusion of transcription-induced (TI) positive supercoils in plasmids or in the chromosome of wild type Escherichia coli cells. Transcription-induced positive supercoils were able to diffuse and affect local supercoiling several kilobases away from the site of origin.

View Article and Find Full Text PDF

We have explored the Escherichia coli chromosome architecture by genetic dissection, using a site-specific recombination system that reveals the spatial proximity of distant DNA sites and records interactions. By analysing the percentages of recombination between pairs of sites scattered over the chromosome, we observed that DNA interactions were restricted to within subregions of the chromosome. The results indicated an organization into a ring composed of four macrodomains and two less-structured regions.

View Article and Find Full Text PDF

The characterization of the two Paramecium gamma-tubulin genes, gammaPT1 and gammaPT2, allowed us to raise Paramecium-specific antibodies, directed against their most divergent carboxy-terminal peptide and to analyze the localization and dynamics of gamma-tubulin throughout the cell cycle. As in other cell types, a large proportion of the protein was found to be cytosolic, but in contrast to the general situation, gamma-tubulin was found to be permanently associated to four types of sites: basal bodies, the micronuclear compartment--within which mitotic and meiotic spindles develop without membrane breakdown, the pores of the contractile vacuoles and the cytoproct which are cortical microtubular organelles fulfilling excretory functions. In addition, a transient site of gamma-tubulin and microtubule assembly was observed at the site of nuclear exchange during conjugation.

View Article and Find Full Text PDF

A group II intron that was previously identified within Azotobacter vinelandii by polymerase chain reac-tion with consensus primers has been completely sequenced, together with its flanking exons. In contrast to other bacterial members of group II, which are associated with mobile or other presumably non-essential DNA, the A. vinelandii intron is inserted within the termination codon of the groEL coding sequence, which it changes from UAA to UAG.

View Article and Find Full Text PDF

The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined.

View Article and Find Full Text PDF

Insects are major vectors of plant and animal disease, and bacterial phytopathogens are often disseminated by flies. We have previously reported that some isolates of the phytopathogenic bacterial species Erwinia carotovora infect Drosophila and activate an immune response. Using a genetic screen, we have now identified two genes that are required by E.

View Article and Find Full Text PDF

The segmented urbilateria: a testable scenario.

Integr Comp Biol

February 2003

Centre de Génétique Moléculaire du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.

The idea that the last common ancestor of bilaterian animals (Urbilateria) was segmented has been raised recently on evidence coming from comparative molecular embryology. Leaving aside the complex debate on the value of genetic evidence, the morphological and developmental evidence in favor of a segmented Urbilateria are discussed in the light of the emerging molecular phylogeny of metazoans. Applying a cladistic character optimization procedure to the question of segmentation is vastly complicated by the problem of defining without ambiguity what segmentation is and to what taxa this definition applies.

View Article and Find Full Text PDF

Drosophila larval hematopoietic organs produce circulating hemocytes that ensure the cellular host defense by recognizing and neutralizing non-self or noxious objects through phagocytosis or encapsulation and melanization. Hematopoietic lineage specification as well as blood cell proliferation and differentiation are tightly controlled. Mutations in genes that regulate lymph gland cell proliferation and hemocyte numbers in the body cavity cause hematopoietic organ overgrowth and hemocyte overproliferation.

View Article and Find Full Text PDF

In arthropods, the melanization reaction is associated with multiple host defense mechanisms leading to the sequestration and killing of invading microorganisms. Arthropod melanization is controlled by a cascade of serine proteases that ultimately activates the enzyme prophenoloxidase (PPO), which, in turn, catalyzes the synthesis of melanin. Here we report the biochemical and genetic characterization of a Drosophila serine protease inhibitor protein, Serpin-27A, which regulates the melanization cascade through the specific inhibition of the terminal protease prophenoloxidase-activating enzyme.

View Article and Find Full Text PDF

Energy transduction in mitochondria involves five oligomeric complexes embedded within the inner membrane. They are composed of catalytic and noncatalytic subunits, the role of these latter proteins often being difficult to assign. One of these complexes, the bc1 complex, is composed of three catalytic subunits including cytochrome b and seven or eight noncatalytic subunits.

View Article and Find Full Text PDF

A large Hox cluster comprising at least seven genes has evolved by gene duplications in the ancestors of bilaterians. It probably emerged from a mini-cluster of three or four genes that was present before the divergence of cnidarians and bilaterians. The comparison of Hox structural data in bilaterian phyla shows that the genes of the anterior part of the cluster have been more conserved than those of the posterior part.

View Article and Find Full Text PDF

We constructed a series of plasmids that allow the insertion of cloned DNA in the Escherichia coli chromosome by site-specific integration into the bacteriophage HK022 bacterial attachment site. These plasmids make use of a ColE1 origin of replication, the phage HK022 attachment site attP, antibiotic resistance genes for selection and unique restriction sites. Circularisation of non-replicative fragments containing the HK022 attachment site attP is performed in vitro and site-specific integration of attP containing molecules is ensured by transfer into cells transiently expressing the HK022 integrase gene carried by a thermosensitive replicon.

View Article and Find Full Text PDF

Transcription attenuation associated with bacterial repetitive extragenic BIME elements.

J Mol Biol

November 2001

Centre de Génétique Moléculaire du CNRS, Centre National de la Recherche Scientifique, Gif-sur-Yvette Cedex, F-91198, France.

Transcription attenuation comprises several processes that affect transcript elongation and transcription termination, and has an important role in regulating gene expression. In most cases, transcription attenuation is used as a regulatory mechanism that allows the cell to adjust protein synthesis levels in response to a specific signal. Here, by using a tRNA gene as a transcriptional reporter, we characterize a new type of transcription attenuation mechanism in Escherichia coli that involves bacterial interspersed mosaic elements (BIMEs), the main family of repetitive extragenic elements.

View Article and Find Full Text PDF

The infraciliary lattice, a contractile cortical cytoskeletal network of Paramecium, is composed of a small number of polypeptides including centrins. Its overall pattern reflects a hierarchy of structural complexity, from assembly and bundling of microfilaments to formation of polygonal meshes arranged in a continuous network subtending the whole cell surface, with local differentiations in the shape and size of the meshes. To analyse how the geometry of this complex network is generated and maintained, we have taken two approaches.

View Article and Find Full Text PDF