1,429 results match your criteria: "Centre de Génétique Moléculaire du CNRS[Affiliation]"

Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2.

Nucleic Acids Res

December 2024

Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France.

The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.

View Article and Find Full Text PDF

Small molecules targeting the eubacterial β-sliding clamp discovered by combined and screening approaches.

J Enzyme Inhib Med Chem

December 2025

Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.

Antibiotic resistance stands as the foremost post-pandemic threat to public health. The urgent need for new, effective antibacterial treatments is evident. Protein-protein interactions (PPIs), owing to their pivotal role in microbial physiology, emerge as novel and attractive targets.

View Article and Find Full Text PDF

Bioactive phosphorus dendrimers deliver protein/drug to tackle osteoarthritis via cooperative macrophage reprogramming.

Biomaterials

May 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China. Electronic address:

Article Synopsis
  • - The study focuses on reprogramming synovial macrophages and creating an immune environment that supports bone and cartilage growth to address osteoarthritis (OA) effectively.
  • - Researchers developed a nanosystem using bioactive phosphorus dendrimers loaded with catalase (CAT) and quercetin (Que), which helps shift macrophages to a beneficial anti-inflammatory state and supports cell health.
  • - When tested on an OA mouse model, this system reduced cartilage damage, bone erosion, and inflammation, and it also showed potential in human-derived cells by promoting similar positive changes in macrophages from OA patients.
View Article and Find Full Text PDF

RNA-Puzzles Round V: blind predictions of 23 RNA structures.

Nat Methods

December 2024

GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.

Article Synopsis
  • - RNA-Puzzles is a collaborative project focused on improving the prediction of RNA three-dimensional structures, with predictions made by modeling groups before experimental structures are published.
  • - A significant set of predictions was made by 18 groups for 23 different RNA structures, including various elements like ribozymes and aptamers.
  • - The study highlights key challenges in RNA modeling, such as identifying helix pairs and ensuring proper stacking, and notes that some top-performing groups also excelled in a separate competition (CASP15).
View Article and Find Full Text PDF

Climate change has marked effects on global weather patterns and oceanic systems, impacting animal behaviour and fitness in potentially profound ways. Despite this, we lack detailed information about species' responses to climatic variation. Using an 11-year tracking dataset of over 300 individual birds, we explore the consequences of variation in the southern annular mode (SAM) and southern oscillation index (SOI) for individual behaviour and fitness in wandering albatrosses breeding in the Southern Indian Ocean.

View Article and Find Full Text PDF

Individualized optimal strategy in team pursuit for track cycling.

Sci Rep

October 2024

LadHyX, UMR 7646 du CNRS, Ecole polytechnique, 91120, Palaiseau, France.

In track cycling, performance in the team pursuit depends on the mechanical and physiological abilities of each member of the team, but also on the choice of racing strategy. Athletes must cover the 4000 m of the race, sharing the effort between them in successive relays. This raises the question of the optimum strategy.

View Article and Find Full Text PDF

The genus is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of . Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats.

View Article and Find Full Text PDF

Cancer cell proliferation and metastasis are known to be dependent on angiogenesis which is regulated by several parameters including copper availability. Tetradentate monoquinoline (TDMQ) ligands constitute a series of chelators tailored to regulate copper homeostasis due to their specificity for copper(ii) with respect to Cu(i) or other biometals like iron or zinc. One of these chelators, TDMQ20 efficiently inhibits both proliferation and migration of several human cancer cell lines, better than the reference drug 5-fluorouracil, and with higher selectivity indexes with respect to non-cancer human cells.

View Article and Find Full Text PDF
Article Synopsis
  • - Conformational dynamics of RNA is essential for its biological roles and therapeutic applications.
  • - The CECAM workshop in Paris focused on how both experimental and computational methods can explore RNA dynamics.
  • - Key insights and takeaways were shared during the workshop, highlighting the importance of understanding RNA behavior for advanced research and development.
View Article and Find Full Text PDF

Temperature-Dependent tRNA Modifications in Bacillales.

Int J Mol Sci

August 2024

Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107 Leipzig, Germany.

Article Synopsis
  • tRNA modifications play a crucial role in helping organisms adapt to temperature changes, influencing the rigidity and flexibility of the tRNA transcripts.
  • The study focused on comparing tRNA modification patterns in thermophilic, mesophilic, and psychrophilic bacteria, revealing unique profiles for each type in relation to their growth temperatures.
  • Highest tRNA modifications were found in thermophilic bacteria at optimal temperatures, while psychrophilic and mesophilic bacteria showed increased dihydrouridine (D) modifications, supporting their adaptation to colder environments.
View Article and Find Full Text PDF

In many physical situations in which many-body assemblies exist at temperature , a characteristic quantum-mechanical time scale of approximately [Formula: see text] can be identified in both theory and experiment, leading to speculation that it may be the shortest meaningful time in such circumstances. This behavior can be investigated by probing the scattering rate of electrons in a broad class of materials often referred to as "strongly correlated metals". It is clear that in some cases only electron-electron scattering can be its cause, while in others it arises from high-temperature scattering of electrons from quantized lattice vibrations, i.

View Article and Find Full Text PDF

Phosphorus Dendrimers Co-deliver Fibronectin and Edaravone for Combined Ischemic Stroke Treatment via Cooperative Modulation of Microglia/Neurons and Vascular Regeneration.

Adv Healthc Mater

November 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.

The development of new multi-target combination treatment strategies to tackle ischemic stroke (IS) remains to be challenging. Herein, a proof-of-concept demonstration of an advanced nanomedicine formulation composed of macrophage membrane (MM)-camouflaged phosphorous dendrimer (termed as AK137)/fibronectin (FN) nanocomplexes (NCs) loaded with antioxidant edaravone (EDV) to modulate both microglia and neurons for effective IS therapy is showcased. The created MM@AK137-FN/EDV (M@A-F/E) NCs with a mean size of 260 nm possess good colloidal stability, sustained EDV release kinetics, and desired cytocompatibility.

View Article and Find Full Text PDF

Plant and algal lipidomes: Analysis, composition, and their societal significance.

Prog Lipid Res

November 2024

Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal. Electronic address:

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids.

View Article and Find Full Text PDF

Saturn's mid-sized icy moons have complex relationships with Saturn's interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of the formation and evolution of Saturn and its rings. Here, we describe the cratering records of the mid-sized moons and the value and limitations of their use for constraining the histories of the moons.

View Article and Find Full Text PDF

ADATs: roles in tRNA editing and relevance to disease.

Acta Biochim Biophys Sin (Shanghai)

July 2024

Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.

Transfer RNAs (tRNAs) play central roles in protein biosynthesis. Post-transcriptional RNA modifications affect tRNA function and stability. Among these modifications, RNA editing is a widespread RNA modification in three domains of life.

View Article and Find Full Text PDF

Perturbation of METTL1-mediated tRNA N- methylguanosine modification induces senescence and aging.

Nat Commun

July 2024

Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.

Cellular senescence is characterized by a decrease in protein synthesis, although the underlying processes are mostly unclear. Chemical modifications to transfer RNAs (tRNAs) frequently influence tRNA activity, which is crucial for translation. We describe how tRNA N7-methylguanosine (m7G46) methylation, catalyzed by METTL1-WDR4, regulates translation and influences senescence phenotypes.

View Article and Find Full Text PDF

When does a parasite become a disease? eDNA unravels complex host-pathogen dynamics across environmental stress gradients in wild salmonid populations.

Sci Total Environ

October 2024

Université Toulouse III Paul Sabatier, CNRS, IRD, UMR-5300 CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), 118 route de Narbonne, F-31062 Toulouse, France; Institut Universitaire de France, Paris, France.

Infectious diseases stem from disrupted interactions among hosts, parasites, and the environment. Both abiotic and biotic factors can influence infection outcomes by shaping the abundance of a parasite's infective stages, as well as the host's ability to fight infection. However, disentangling these mechanisms within natural ecosystems remains challenging.

View Article and Find Full Text PDF

Widespread horse-based mobility arose around 2200 BCE in Eurasia.

Nature

July 2024

Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR 5288, Université Paul Sabatier, Faculté de Médecine Purpan, Toulouse, France.

Article Synopsis
  • - Horses transformed human mobility, but the timeline of their domestication and integration as transport is debated, with new genetic data being used to clarify this history.
  • - Analysis of 475 ancient horse genomes indicates that modern domestic horses were shaped by human intervention around 2200 BCE, after a domestication bottleneck began around 2700 BCE, leading to a significant expansion across Eurasia.
  • - Evidence also suggests that there was early horse husbandry in central Asia at Botai around 3500 BCE, prior to the establishment of contemporary horse bloodlines, challenging the notion of large herds being linked to migrations around 3000 BCE.
View Article and Find Full Text PDF

MinActionPath2: path generation between different conformations of large macromolecular assemblies by action minimization.

Nucleic Acids Res

July 2024

Unité Architecture et Dynamique des Macromolécules Biologiques, Institut Pasteur, Université Paris Cité, UMR 3528 du CNRS, 75015 Paris, France.

Recent progress in solving macromolecular structures and assemblies by cryogenic electron microscopy techniques enables sampling of their conformations in different states that are relevant to their biological function. Knowing the transition path between these conformations would provide new avenues for drug discovery. While the experimental study of transition paths is intrinsically difficult, in-silico methods can be used to generate an initial guess for those paths.

View Article and Find Full Text PDF

The tricarbonylrhenium complexes that incorporate a mesoionic carbene ligand represent an emerging and promising class of molecules, the solid-state optical properties of which have rarely been investigated. The aim of this comprehensive study is to compare three of these complexes with their 1,2,3-triazole-based analogues. The Hirshfeld surface analysis of the crystallographic data revealed that the triazolylidene derivatives are more prone to π-π interactions than their 1,2,3-triazole-based counterparts.

View Article and Find Full Text PDF

The field of supported catalysis has experienced increased attention with respect to the development of novel architectures for immobilizing catalytic species, aiming to maintain or enhance their activity while facilitating the easy recovery and reuse of the active moiety. Dendrimers have been identified as promising candidates capable of imparting such properties to catalysts through selective functionalization. The present study details the synthesis of two polyphosphorhydrazone (PPH) dendrons, each incorporating azide or acetylene groups at the core for subsequent coupling through "click" triazole chemistry.

View Article and Find Full Text PDF

Brain delivery of fibronectin through bioactive phosphorous dendrimers for Parkinson's disease treatment via cooperative modulation of microglia.

Bioact Mater

August 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China.

Effective treatment of Parkinson's disease (PD), a prevalent central neurodegenerative disorder particularly affecting the elderly population, still remains a huge challenge. We present here a novel nanomedicine formulation based on bioactive hydroxyl-terminated phosphorous dendrimers (termed as AK123) complexed with fibronectin (FN) with anti-inflammatory and antioxidative activities. The created optimized AK123/FN nanocomplexes (NCs) with a size of 223 nm display good colloidal stability in aqueous solution and can be specifically taken up by microglia through FN-mediated targeting.

View Article and Find Full Text PDF

Magnetar giant flares are rare explosive events releasing up to 10 erg in gamma rays in less than 1 second from young neutron stars with magnetic fields up to 10 G (refs. ). Only three such flares have been seen from magnetars in our Galaxy and in the Large Magellanic Cloud in roughly 50 years.

View Article and Find Full Text PDF

Toward vanishing droplet friction on repellent surfaces.

Proc Natl Acad Sci U S A

April 2024

Department of Applied Physics, Aalto University, Espoo 02150, Finland.

Superhydrophobic surfaces are often seen as frictionless materials, on which water is highly mobile. Understanding the nature of friction for such water-repellent systems is central to further minimize resistance to motion and energy loss in applications. For slowly moving drops, contact-line friction has been generally considered dominant on slippery superhydrophobic surfaces.

View Article and Find Full Text PDF

Nanoparticle-Mediated Multiple Modulation of Bone Microenvironment To Tackle Osteoarthritis.

ACS Nano

April 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China.

Development of nanomedicines that can collaboratively scavenge reactive oxygen species (ROS) and inhibit inflammatory cytokines, along with osteogenesis promotion, is essential for efficient osteoarthritis (OA) treatment. Herein, we report the design of a ROS-responsive nanomedicine formulation based on fibronectin (FN)-coated polymer nanoparticles (NPs) loaded with azabisdimethylphoaphonate-terminated phosphorus dendrimers (G4-TBP). The constructed G4-TBP NPs-FN with a size of 268 nm are stable under physiological conditions, can be specifically taken up by macrophages through the FN-mediated targeting, and can be dissociated in the oxidative inflammatory microenvironment.

View Article and Find Full Text PDF