4 results match your criteria: "Centre National de la Recherche Scientifique UMR 8003[Affiliation]"
Nature
July 2023
Howard Hughes Medical Institute, New Haven, CT, USA.
Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ).
View Article and Find Full Text PDFJ Neurosci
July 2022
Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex.
View Article and Find Full Text PDFASN Neuro
January 2022
Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA.
Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs.
View Article and Find Full Text PDFMol Brain
July 2021
Saints-Pères Paris Institute for the Neurosciences, Université de Paris, Centre National de la Recherche Scientifique UMR 8003, 45 rue des Saints Pères, 75006, Paris, France.
Memory and long term potentiation require de novo protein synthesis. A key regulator of this process is mTORC1, a complex comprising the mTOR kinase. Growth factors activate mTORC1 via a pathway involving PI3-kinase, Akt, the TSC complex and the GTPase Rheb.
View Article and Find Full Text PDF