5 results match your criteria: "Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University[Affiliation]"
J Steroid Biochem Mol Biol
February 2019
Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada. Electronic address:
Human 17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 and 7 catalyze the final step of estrogen activation and the first step in androgen inactivation. It has been shown in breast cancer cells that DHT has a suppression effect on cell proliferation, counteracting the estrogen growth effect. However, the exact kinetic function of 17β-HSD7 in steroidogenesis was not determined.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2017
Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada. Electronic address:
This study addresses first the role of human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) in breast cancer (BC) cells. The enzyme has a high estrone-activating activity that is subject to strong substrate inhibition as shown by enzyme kinetics at the molecular level. We used BC cells to verify this phenomenon in living cells: estrone concentration increase did reduce the reaction with 0.
View Article and Find Full Text PDFBiochem J
April 2016
Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Quebec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada Shanghai Engineer and technology Research Center of Reproductive Health Drug and Devices, Shanghai 200032, P.R. China
Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred.
View Article and Find Full Text PDFJ Mol Cell Biol
December 2015
Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire de Québec Research Center (CHUL, CHU) and Laval University, Québec City, Québec, G1V4G2, Canada
17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 is known as a critical target to block the final step of estrogen production in estrogen-dependent breast cancer. Recent confirmation of the role of dyhydroxytestosterone (DHT) in counteracting estrogen-induced cell growth prompted us to study the reductive 17β-HSD type 7 (17β-HSD7), which activates estrone while markedly inactivating DHT. The role of DHT in breast cancer cell proliferation is demonstrated by its independent suppression of cell growth in the presence of a physiological concentration of estradiol (E2).
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
May 2014
Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; WHO Collaborating Center for Research in Human Reproductive Health, Shanghai 200031, PR China. Electronic address:
Human 3-alpha hydroxysteroid dehydrogenase type 3 (3α-HSD3) has an essential role in the inactivation of 5α-dihydrotestosterone (DHT). Notably, human 3α-HSD3 shares 97.8% sequence identity with human 20-alpha hydroxysteroid dehydrogenase (20α-HSD) and there is only one amino acid difference (residue 54) that is located in their steroid binding pockets.
View Article and Find Full Text PDF