377 results match your criteria: "Centre Energie[Affiliation]"

Modulating the 0D/2D Interface of Hybrid Semiconductors for Enhanced Photoelectrochemical Performances.

Small Methods

August 2021

Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2 Varennes, Québec, Canada.

Photoelectrochemical (PEC) solar-driven hydrogen production is a promising route to convert solar energy into chemical energy using semiconductors as active materials. However, the performance is still far from satisfactory due to a limited absorption range and rapid charge recombination. Compared to 3D semiconductors, 0D/2D nanohybrids may exhibit better PEC performance, due to the formation of an intimate interface between the two semiconductors that can inhibit carrier recombination.

View Article and Find Full Text PDF

Rechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis.

View Article and Find Full Text PDF

Non-PGM Electrocatalysts for PEM Fuel Cells: A DFT Study on the Effects of Fluorination of FeN-Doped and N-Doped Carbon Catalysts.

Molecules

December 2021

Centre Énergie, Matériaux, Télécommunications, Institut National de la Recherche Scientifique, 1650 Bd. Lionel-Boulet, Varennes, QC J3X 1S2, Canada.

Fluorination is considered as a means of reducing the degradation of Fe/N/C, a highly active FeN-doped disorganized carbon catalyst for the oxygen reduction reaction (ORR) in PEM fuel cells. Our recent experiments have, however, revealed that fluorination poisons the FeN moiety of the Fe/N/C catalytic site, considerably reducing the activity of the resulting catalyst to that of carbon only doped with nitrogen. Using the density functional theory (DFT), we clarify in this work the mechanisms by which fluorine interacts with the catalyst.

View Article and Find Full Text PDF

Plasmonic nanocrystals and their assemblies are excellent tools to create functional systems, including systems with strong chiral optical responses. Here we study the possibility of growing chiral plasmonic nanocrystals from strictly nonchiral seeds of different types by using circularly polarized light as the chirality-inducing mechanism. We present a novel theoretical methodology that simulates realistic nonlinear and inhomogeneous photogrowth processes in plasmonic nanocrystals, mediated by the excitation of hot carriers that can drive surface chemistry.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in optical thermometry have highlighted the need for real-time wide-field photoluminescence lifetime imaging, which is currently lacking in existing instruments.
  • The study introduces a new technique called single-shot photoluminescence lifetime imaging thermometry (SPLIT), enabling video-rate temperature sensing by capturing luminescence intensity decay from multiple views in a single exposure.
  • SPLIT successfully maps temperature in real-time using upconverting nanoparticles, demonstrating its potential for monitoring dynamic temperature changes in both static environments and moving biological samples at a single-cell resolution.
View Article and Find Full Text PDF

Atomic Identification of Interfaces in Individual Core@shell Quantum Dots.

Adv Sci (Weinh)

November 2021

College of Physics & State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China.

CdSe@CdS Core@shell quantum dots (QDs) have been widely studied in recent years, due to their architecture which allows to tailor properties by controlling structure and composition. However, since CdSe and CdS have the same crystal structure, same cations, and similar lattice parameters, it is very challenging to image the interface. Herein, high-resolution transmission electron microscopy, high-angle annular dark-field imaging, and energy-dispersive X-ray spectroscopy elemental mapping are combined to characterize the core@shell structure and identify the interface in the CdSe@CdS QDs with different CdS shell thicknesses.

View Article and Find Full Text PDF

Description of redox reactions is critically important for understanding and rational design of materials for electrochemical technologies, including metal-ion batteries, catalytic surfaces, or redox-flow cells. Most of these technologies utilize redox-active transition metal compounds due to their rich chemistry and their beneficial physical and chemical properties for these types of applications. A century since its introduction, the concept of formal oxidation states (FOS) is still widely used for rationalization of the mechanisms of redox reactions, but there exists a well-documented discrepancy between FOS and the electron density-derived charge states of transition metal ions in their bulk and molecular compounds.

View Article and Find Full Text PDF

Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic--glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally.

View Article and Find Full Text PDF

The development of advanced electrode materials derived from biomass for the next generation of energy storage devices, such as supercapacitors with high specific energy and specific power coupled with a good cycle stability, is required to meet the high demand for electric vehicles and portable devices. In this study, sustainable binary vanadium pentoxide carbon-graphene foam composites (VO@C-RHS/GF) were synthesized using a solvothermal method. The X-ray diffraction, Raman and FTIR techniques were used to study the structural properties of the composites (VO@C-RHS/20 mg GF and VO@C-RHS/40 mg GF).

View Article and Find Full Text PDF

Blue-color-emitting organic semiconductors are of significance for organic light-emitting diodes (OLEDs). In this study, through Suzuki coupling polymerization, three 1,4-naphthalene-based copolymers-namely, PNP(1,4)-PT, PNP(1,4)-TF, and PNP(1,4)-ANT-were designed and synthesized. The variation of comonomers, phenothiazine (PT), triphenylamine substituted fluorene (TF), and anthanthrene (ANT), effectively tuned the emitting color and device performance of poly(9-vinyl carbazole) (PVK)-based OLEDs.

View Article and Find Full Text PDF

Self-Assembly of CsPbBr Nanocubes into 2D Nanosheets.

ACS Appl Mater Interfaces

September 2021

College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao 266017, People's Republic of China.

All-inorganic metal halide perovskites have attracted considerable attention due to their high application potentials in optoelectronics, photonics, and energy conversion. Herein, two-dimensional (2D) CsPbBr nanosheets with a thickness of about 3 nm have been synthesized through a simple chemical process based on a hot-injection technique. The lateral dimension of CsPbBr nanosheets ranges from 11 to 110 nm, which can be tuned by adjusting the ratio of short ligands (octanoic acid and octylamine) over long ligands (oleic acid and oleylamine).

View Article and Find Full Text PDF

The emerging environmental issues necessitate the engineering of novel and well-designed nanoadsorbents for advanced separation and purification applications. Despite recent advances, the facile synthesis of hierarchical micro-mesoporous metal-organic frameworks (MOFs) with tuned structures has remained a challenge. Herein, we report a simple defect engineering approach to manipulate the framework, induce mesoporosity, and crease large pore volumes in MIL-101(Cr) by embedding graphene quantum dots (GQDs) during its self-assembly process.

View Article and Find Full Text PDF

"Giant" core/shell quantum dots (g-QDs) are promising candidates for emerging optoelectronic technologies thanks to their facile structure/composition-tunable optoelectronic properties and outstanding photo-physical/chemical stability. Here, we synthesized a new type of CuInTeSe (CITS)/CdS g-QDs and regulated their optoelectronic properties by controlling the shell thickness. Through increasing the shell thickness, as-prepared g-QDs exhibited tunable red-shifted emission (from 900 to 1200 nm) and prolonged photoluminescence (PL) lifetimes (up to ∼14.

View Article and Find Full Text PDF

Identification of Topotactic Surface-Confined Ullmann-Polymerization.

Small

October 2021

Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, Roma, 00133, Italy.

On-surface Ullmann coupling is an established method for the synthesis of 1D and 2D organic structures. A key limitation to obtaining ordered polymers is the uncertainty in the final structure for coupling via random diffusion of reactants over the substrate, which leads to polymorphism and defects. Here, a topotactic polymerization on Cu(110) in a series of differently-halogenated para-phenylenes is identified, where the self-assembled organometallic (OM) reactants of diiodobenzene couple directly into a single, deterministic product, whereas the other precursors follow a diffusion driven reaction.

View Article and Find Full Text PDF

Two-dimensional CuFeSe nanosheets have been successfully obtained via solution-phase synthesis using a sacrificial template method. The high purity was confirmed by X-ray diffraction and the two-dimensional morphology was validated by transmission electron microscopy. The intense absorption in the 400-1400 nm region has been the basis for the CuFeSe nanosheets' photothermal capabilities testing.

View Article and Find Full Text PDF

Fluorophores with multifunctional properties known as rare-earth-doped nanoparticles (RENPs) are promising candidates for bioimaging, therapy, and drug delivery. When applied , these nanoparticles (NPs) have to retain long blood-circulation time, bypass elimination by phagocytic cells, and successfully arrive at the target area. Usually, NPs in a biological medium are exposed to proteins, which form the so-called "protein corona" (PC) around the NPs and influence their targeted delivery and accumulation in cells and tissues.

View Article and Find Full Text PDF

An advanced dual-flow perfusion bioreactor with a simple and compact design was developed and evaluated as a potential apparatus to reduce the gap between animal testing and drug administration to human subjects in clinical trials. All the experimental tests were carried out using an ad hoc Poly Lactic Acid (PLLA) scaffold synthesized via Thermally Induced Phase Separation (TIPS). The bioreactor shows a tunable radial flow throughout the microporous matrix of the scaffold.

View Article and Find Full Text PDF

Human activity recognition (HAR) by wearable sensor devices embedded in the Internet of things (IOT) can play a significant role in remote health monitoring and emergency notification to provide healthcare of higher standards. The purpose of this study is to investigate a human activity recognition method of accrued decision accuracy and speed of execution to be applicable in healthcare. This method classifies wearable sensor acceleration time series data of human movement using an efficient classifier combination of feature engineering-based and feature learning-based data representation.

View Article and Find Full Text PDF

In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques.

Rev Sci Instrum

May 2021

Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique (INRS-EMT), Université du Québec, 1650, Blvd. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.

Plasmonic nanoantennas are at the core of various optical near-field scanning techniques such as tip-enhanced Raman spectroscopy as they provide the amplification and confinement of the electromagnetic field, which ultimately provides sensitivity and spatial resolution. With a cornucopia of different fabrication methods available, the actual performance of a nanoantenna is often only assessed by whether or not near-field imaging is possible, implying the complete alignment and landing procedure of the scanning probe. We present a semi-quantitative approach to assess the plasmonic enhancement of gold tips via localized surface plasmon resonance (LSPR) enhancement of intrinsic gold photoluminescence without the need for interaction with the sample.

View Article and Find Full Text PDF

In the surge of recent successes of 2D materials following the rise of graphene, molybdenum disulfide (2D-MoS) has been attracting growing attention from both fundamental and applications viewpoints, owing to the combination of its unique nanoscale properties. For instance, the bandgap of 2D-MoS, which changes from direct (in the bulk form) to indirect for ultrathin films (few layers), offers new prospects for various applications in optoelectronics. In this review, we present the latest scientific advances in the field of synthesis and characterization of 2D-MoS films while highlighting some of their applications in energy harvesting, gas sensing, and plasmonic devices.

View Article and Find Full Text PDF

The role of the physicochemical properties of the water-soluble polyacrylic acid (PAA) binder in the electrochemical performance of highly loaded silicon/graphite 50/50 wt % negative electrodes has been examined as a function of the neutralization degree in PAAHLi at the initial cycle in an electrolyte not containing ethylene carbonate. Electrode processing in the acidic PAAH binder at pH 2.5 leads to a deep copper corrosion, resulting in a significant electrode cohesion and adhesion to the current collector surface, but the strong binder rigidity may explain the big cracks occurring on the electrode surface at the first cycle.

View Article and Find Full Text PDF

A novel circular polarized dielectric antenna array (DRA) for millimeter-wave applications at 30 GHz is presented in this paper. The unit element array is a flower-shaped DRA fed with a cross slot. To obtain circular polarization, a sequential network combined with the cross slots is used to feed the 2×2 array.

View Article and Find Full Text PDF

This work focuses on the dependence of the features of PbS films deposited by pulsed laser deposition (PLD) subsequent to the variation of the background pressure of helium (P). The morphology of the PLD-PbS films changes from a densely packed and almost featureless structure to a columnar and porous one as the He pressure increases. The average crystallite size related to the (111) preferred orientation increases up to 20 nm for P ≥ 300 mTorr.

View Article and Find Full Text PDF

Analogous to the case of classical metal oxide semiconductor field-effect transistors, transport properties of graphene-based devices are determined by scattering from adventitious charged impurities that are invariably present. The presence of charged impurities renders experimental graphene samples "extrinsic" in that their electrical performances also depend on the environment in which graphene operates. While the role of such an extrinsic disorder component has been studied for conventional charge transport in graphene, its impact on the magnetotransport remains unexplored.

View Article and Find Full Text PDF

Ketones are widely applied moieties in designing functional materials and are commonly obtained by oxidation of alcohols. However, when alcohols are protected/functionalized, the direct oxidation strategies are substantially curbed. Here we show a highly efficient copper bromide promoted one-step direct oxidation of benzylic ethers to ketones with the aid of a fullerene pendant.

View Article and Find Full Text PDF