377 results match your criteria: "Centre Energie[Affiliation]"

Short-wave Infrared Photoluminescence Lifetime Mapping of Rare-Earth Doped Nanoparticles Using All-Optical Streak Imaging.

Adv Sci (Weinh)

March 2024

Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada.

The short-wave infrared (SWIR) photoluminescence lifetimes of rare-earth doped nanoparticles (RENPs) have found diverse applications in fundamental and applied research. Despite dazzling progress in the novel design and synthesis of RENPs with attractive optical properties, existing optical systems for SWIR photoluminescence lifetime imaging are still considerably restricted by inefficient photon detection, limited imaging speed, and low sensitivity. To overcome these challenges, SWIR photoluminescence lifetime imaging microscopy using an all-optical streak camera (PLIMASC) is developed.

View Article and Find Full Text PDF

Electronic Band Engineering of Two-Dimensional Kagomé Polymers.

ACS Nano

January 2024

Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy.

Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states.

View Article and Find Full Text PDF

Semiconductor core/shell quantum dots (QDs) are considered promising building blocks to fabricate photoelectrochemical (PEC) cells for the direct conversion of solar energy into hydrogen (H). However, the lattice mismatch between core and shell in such QDs results in undesirable defects and severe carrier recombination, limiting photo-induced carrier separation/transfer and solar-to-fuel conversion efficiency. Here, an interface engineering approach is explored to minimize the core-shell lattice mismatch in CdS/CdSeS (x = 0.

View Article and Find Full Text PDF

Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood.

View Article and Find Full Text PDF

A semiconducting hybrid of RhO/GaN@InGaN for simultaneous activation of methane and water toward syngas by photocatalysis.

PNAS Nexus

November 2023

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Prior to the eventual arrival of carbon neutrality, solar-driven syngas production from methane steam reforming presents a promising approach to produce transportation fuels and chemicals. Simultaneous activation of the two reactants, i.e.

View Article and Find Full Text PDF

Concave Structural Carbon Co-Doped with Iron Atom Pairs and Nitrogen as Ultra-High Performance Catalyst Toward Oxygen Reduction.

Small

March 2024

The Key Laboratory of Fuel Cell Technology of Guangdong Province School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.

It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor.

View Article and Find Full Text PDF

The laser-induced breakdown spectroscopy assisted by laser-induced fluorescence (LIBS-LIF) in a two-step process was used to measure the concentration of platinum (Pt) and palladium (Pd) by surface analysis of a solid ore core from the Lac des Iles mine followed by analysis of the same core that was pulverized and compacted. This work focuses mainly on the measurement of Pt since the case of Pd has been extensively discussed in previous work. The excitation of Pt is performed at 235.

View Article and Find Full Text PDF

Femtosecond-laser-assisted material restructuring employs extreme optical intensities to localize the ablation regions. To overcome the minimum feature size limit set by the wave nature of photons, there is a need for new approaches to tailored material processing at the nanoscale. Here, we report the formation of deeply-subwavelength features in silicon, enabled by localized laser-induced phase explosions in prefabricated silicon resonators.

View Article and Find Full Text PDF

In the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage.

View Article and Find Full Text PDF

Surface engineering of two-dimensional hexagonal boron-nitride for optoelectronic devices.

Nanoscale

October 2023

Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, Varennes, J3X 1P7, QC, Canada.

Two-dimensional hexagonal boron nitride (2D h-BN) is being extensively studied in optoelectronic devices due to its electronic and photonic properties. However, the controlled optimization of h-BN's insulating properties is necessary to fully explore its potential in energy conversion and storage devices. In this work, we engineered the surface of h-BN nanoflakes one-step chemical functionalization using a liquid-phase exfoliation approach.

View Article and Find Full Text PDF

Design of Furan-Based Acceptors for Organic Photovoltaics.

Angew Chem Int Ed Engl

October 2023

Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada.

We explore a series of furan-based non-fullerene acceptors and report their optoelectronic properties, solid-state packing, photodegradation mechanism and application in photovoltaic devices. Incorporating furan building blocks leads to the expected enhanced backbone planarity, reduced band gap and red-shifted absorption of these acceptors. Still, their position in the molecule is critical for stability and device performance.

View Article and Find Full Text PDF

Three-dimensional single-pixel imaging (3D SPI) has become an attractive imaging modality for both biomedical research and optical sensing. 3D-SPI techniques generally depend on time-of-flight or stereovision principle to extract depth information from backscattered light. However, existing implementations for these two optical schemes are limited to surface mapping of 3D objects at depth resolutions, at best, at the millimeter level.

View Article and Find Full Text PDF

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the scattering plane in underdoped BiSrCaCuO.

View Article and Find Full Text PDF

Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.

ACS Appl Mater Interfaces

July 2023

Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1P7, Canada.

InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties.

View Article and Find Full Text PDF

A universal route to efficient non-linear response via Thomson scattering in linear solids.

Natl Sci Rev

July 2023

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials.

View Article and Find Full Text PDF

Organic multilevel (opto)electronic memories towards neuromorphic applications.

Nanoscale

July 2023

Institut national de la recherche scientifique (INRS), Centre Énergie Matériaux Télécommunications, 1650 Boul. Lionel Boulet, Varennes J3X 1S2, Canada.

In the past decades, neuromorphic computing has attracted the interest of the scientific community due to its potential to circumvent the von Neumann bottleneck. Organic materials, owing to their fine tunablility and their ability to be used in multilevel memories, represent a promising class of materials to fabricate neuromorphic devices with the key requirement of operation with synaptic weight. In this review, recent studies of organic multilevel memory are presented.

View Article and Find Full Text PDF

This paper presents a new design for a dual-band double-cylinder dielectric resonator antenna (CDRA) capable of efficient operation in microwave and mm-wave frequencies for 5G applications. The novelty of this design lies in the antenna's capability to suppress harmonics and higher-order modes, resulting in a significant improvement in antenna performance. Additionally, both resonators are made of dielectric materials with different relative permittivities.

View Article and Find Full Text PDF

Self-oscillation-the periodic change of a system under a non-periodic stimulus-is vital for creating low-maintenance autonomous devices in soft robotics technologies. Soft composites of macroscopic dimensions are often doped with plasmonic nanoparticles to enhance energy dissipation and generate periodic response. However, while it is still unknown whether a dispersion of photonic nanocrystals may respond to light as a soft actuator, a dynamic analysis of nanocolloids self-oscillating in a liquid is also lacking.

View Article and Find Full Text PDF

Metal nanoparticles (NP) supported on TiO are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO nanobelts (NBs) are engaged in the photocatalytic generation of H from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu/Cu ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening.

View Article and Find Full Text PDF

Sterically-Hindered Molecular p-Dopants Promote Integer Charge Transfer in Organic Semiconductors.

Angew Chem Int Ed Engl

August 2023

Department of Chemistry and Biochemistry, Concordia University, 7141 rue Sherbrooke Ouest, H4B 1R6, Montreal, Québec, Canada.

Molecular p-dopants designed to undergo electron transfer with organic semiconductors are typically planar molecules with high electron affinity. However, their planarity can promote the formation of ground-state charge transfer complexes with the semiconductor host and results in fractional instead of integer charge transfer, which is highly detrimental to doping efficiency. Here, we show this process can be readily overcome by targeted dopant design exploiting steric hindrance.

View Article and Find Full Text PDF

Tumors, their microenvironment, and the mechanisms by which collagen morphology changes throughout cancer progression have recently been a topic of interest. Second harmonic generation (SHG) and polarization second harmonic (P-SHG) microscopy are label-free, hallmark methods that can highlight this alteration in the extracellular matrix (ECM). This article uses automated sample scanning SHG and P-SHG microscopy to investigate ECM deposition associated with tumors residing in the mammary gland.

View Article and Find Full Text PDF

In this study, we present a promising and facile approach toward the fabrication of non-toxic, water-stable, and eco-friendly luminescent fiber paper composed of polycaprolactone (PCL) polymer and CsPbBr@SiO core-shell perovskite nanocrystals. PCL-perovskite fiber paper was fabricated using a conventional electrospinning process. Transmission electron microscopy (TEM) clearly revealed incorporation of CsPbBr@SiO nanocrystals in the fibers, while scanning electron microscopy (SEM) demonstrated that incorporation of CsPbBr@SiO nanocrystals did not affect the surface and diameter of the PCL-perovskite fibers.

View Article and Find Full Text PDF

Sonophotocatalysis is described as a combination of two individual processes of photocatalysis and sonocatalysis. It has proven to be highly promising in degrading dissolved contaminants in wastewaters as well as bacteria disinfection applications. It eliminates some of the main disadvantages observed in each individual technique such as high costs, sluggish activity, and prolonged reaction times.

View Article and Find Full Text PDF

One-step chemically vapor deposited hybrid 1T-MoS/2H-MoS heterostructures towards methylene blue photodegradation.

Ultrason Sonochem

May 2023

Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, Scientific Pole, 33 rue Saint-Leu, 80039 Amiens Cedex 1, France. Electronic address:

The photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique.

View Article and Find Full Text PDF

Single-shot ultrafast terahertz photography.

Nat Commun

March 2023

Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.

Multidimensional imaging of transient events has proven pivotal in unveiling many fundamental mechanisms in physics, chemistry, and biology. In particular, real-time imaging modalities with ultrahigh temporal resolutions are required for capturing ultrashort events on picosecond timescales. Despite recent approaches witnessing a dramatic boost in high-speed photography, current single-shot ultrafast imaging schemes operate only at conventional optical wavelengths, being suitable solely within an optically-transparent framework.

View Article and Find Full Text PDF