177 results match your criteria: "Central Leather Research Institute CLRI[Affiliation]"

Esterification of Polymeric Carbohydrate Through Congener Cutinase-Like Biocatalyst.

Appl Biochem Biotechnol

January 2021

Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.

Cutinase-like enzymes (CLEs) are bi-functional hydrolases, which share the conserved catalytic site of lipase and consensus pentapeptide sequence of cutinase. Here, we have genetically replaced the canonical amino acids (CAA) by their non-canonical fluorinated surrogates to biosynthesize a novel class of congener biocatalyst for esterification of polymeric carbohydrate with long-chain fatty acid. It is a new enzyme-engineering approach used to manipulate industrially relevant biocatalyst through genetic incorporation of new functionally encoded non-canonical amino acids (NCAA).

View Article and Find Full Text PDF

Chromium-catechin complex was synthesized by reacting [Cr(HO)] (hexa-aqua) with catechin as a ligand. Toxicity studies were carried out for the complex using bacterial models for safer application of this complex in the future as a drug. Chromium-catechin complex was characterized using ESI Mass spectrometry, electronic spectroscopy, FT-IR spectroscopy and cyclic voltammetry.

View Article and Find Full Text PDF

Reduced risk of breast cancer upon intake of lutein-rich food supplements creates an interest to investigate the molecular mechanism underlying the growth inhibitory potential of lutein in MCF-7 and MDA-MB-231 cells. Lutein purified from Spinacia oleracea was identified by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The cell viability was measured by water-soluble tetrazolium-1 assay.

View Article and Find Full Text PDF

The main objective of the present study is evaluation of groundwater aptness for crops and chromium concentration in vegetables from an industrial (leather tanning) sector of South India using geospatial techniques. Seventy groundwater samples were collected from the open and tube wells during November 2017, February 2018, May 2018 and September 2018 to represent northeast (NE) monsoon (October-December), post-monsoon (winter) (January-February), pre-monsoon (summer) (March-May) and southwest (SW) monsoon (June-September) seasons, respectively. In addition, vegetables were also collected during the above-mentioned seasons from the market to assess the level of chromium content in them.

View Article and Find Full Text PDF

Insights into the effect of artificial sweeteners on the structure, stability, and fibrillation of type I collagen.

Int J Biol Macromol

December 2020

Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600020, India. Electronic address:

Artificial sweeteners (AS) are widely used as sugar substitutes because natural sweetener (sugar) leads to a number of health issues, including diabetes, obesity, and tooth decay. Since natural sugar (sucrose), diabetes and skin are highly interlinked, and also sucrose is known to inhibit the fibrillation of collagen, the major protein of the skin, a study on the impact of AS on collagen is important and essential. Herein, we have studied the influence of commonly used AS such as Sucralose (SUC), Aspartame (APM), and Saccharin (SAC) on the structure, stability, and fibrillation of collagen using various spectroscopic methods.

View Article and Find Full Text PDF

The multi-spectroscopic approach on the interaction between rabbit serum albumin and cationic surfactant: Investigation on the formation and solubilization of the protein aggregation.

Spectrochim Acta A Mol Biomol Spectrosc

October 2020

Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science & Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

The protein-surfactant interaction studies have great importance in the range of the application like cosmetics, food, pharmaceutical, detergent industries, and many more. In this study, we have studies protein (rabbit serum albumin, RSA) and a cationic surfactant (cetyltrimethylammonium bromide, CTAB) interaction at different physiological conditions (viz., pH, ionic strength, surfactants concentrations, protein concentration, and many more).

View Article and Find Full Text PDF

Biosynthesis of nanoparticles has now become a novel trend in addressing some of the environmental issues by adopting eco-friendly approaches in manoeuvring nanoparticles for various applications. Plants and micro-organisms have been the potential sources of the biological mode of synthesizing nanoparticles as part of their bioremediation process. This principle has been harnessed for synthesizing nanoparticles either extra or intracellularly.

View Article and Find Full Text PDF

Spectroscopic studies of the aggregation behavior of Human Serum Albumin and cetyltrimethylammonium bromide.

Int J Biol Macromol

May 2020

Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India. Electronic address:

To check the role of micelle in the interaction studies of human serum albumin (HSA) and cetyltrimethylammonium bromide (CTAB), many spectroscopic techniques, like UV-visible, fluorescence, circular dichroism, fluorescence lifetime measurement, and atomic force microscopy (AFM), are employed. The binding affinity of all compound groups depended on the hydrocarbon chain, indicating the predominant role of hydrophobic forces, electrostatic forces and supported by polar interactions on protein surfaces. The protein has a different effect on the polarity of a microenvironment in fluorescence spectra above and below the critical micelle concentration (CMC) of the suractant.

View Article and Find Full Text PDF

Tissue engineering is currently one the fastest growing engineering fields, requiring fabrication of advanced and multifunctional materials to be used as scaffolds or dressing for tissue regeneration. In this work, a bilayer matrix was fabricated by electrospinning of a hybrid cellulose acetate nanofibers (CA) containing bioactive latex or Ciprofloxacin over highly interconnected collagen (CSPG) 3D matrix previously obtained by a freeze-drying process. The bilayer matrix was fabricated with a nanofibrous part as the primary (top) layer and a spongy porous part as the secondary (bottom) layer by combining electrospinning and freeze-drying techniques to enhance the synergistic effect of both materials corresponding to physical and biological properties.

View Article and Find Full Text PDF

A facile and diversity-oriented approach has been developed for the synthesis of pyrrole-, pyridine-, or azepine-appended (het)aryl aminoamides via the -allylation/homoallylation-ring-closing metathesis (RCM) strategy. Microwave condition was efficiently utilized for -allylation of (het)aryl aminoamides to synthesize di-, tri-, and tetra-allyl/homoallylated RCM substrates in good yields. All of the RCM substrates were successfully converted to respective pyrroles , ,, ,, pyridines , , and azepines , via RCM.

View Article and Find Full Text PDF

Polymer nanocomposites have been synthesized by the covalent addition of bromide-functionalized graphene (Graphene-Br) through the single electron transfer-living radical polymerization technique (SET-LRP). Graphite functionalized with bromide for the first time via an efficient route using mild reagents has been designed to develop a graphene based radical initiator. The efficiency of sacrificial initiator (ethyl α-bromoisobutyrate) has also been compared with a graphene based initiator towards monitoring their Cu(0) mediated controlled molecular weight and morphological structures through mass spectroscopy (MOLDI-TOF) and field emission scanning electron microscopy (FE-SEM) analysis, respectively.

View Article and Find Full Text PDF

To validate the efficacy of recombinant human epidermal growth factor (hEGH) in healing diabetic foot ulcers (DFUs) at biochemical and molecular levels. A total of 50 noninfected DFU subjects were recruited for the study and divided into 2 groups based on the treatment application on the subjects. Group 1: DFU subjects treated with hEGH gel-based product called Regen-D 150 (n = 27) and group 2: DFU subjects treated with alternative placebo as the control group (n = 23).

View Article and Find Full Text PDF

Influence of micelles on protein's denaturation.

Int J Biol Macromol

February 2020

Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India. Electronic address:

To evaluate the role of micelles for protein-surfactant interaction, we have studied the binding modes of serum albumin proteins (human (HSA) and rabbit (RSA)) with anionic-surfactant, sodium dodecyl sulfate (SDS) by using UV-visible, fluorescence, circular dichroism, fluorescence lifetime, atomic force microscopy (AFM) techniques. The study performed with three different pHs (below (4.0), at (4.

View Article and Find Full Text PDF

A novel fed-batch strategy based on carbon/nitrogen (C/N) ratio in a microbial co-culture production medium broth was carried out in a biocalorimeter for improved production of poly (3-hydroxybutyrate) (PHB). Shake flask study suggested that the C/N ratio of 10 increased the yield of PHB by 2.8 times.

View Article and Find Full Text PDF

The wastewater generated from fish processing industry contains a credible level of biodegradable proteins and low biodegradable fats, oils, and grease (FOG). The conventional biological treatment of fish processing wastewater (FPWW) containing high concentration of FOG faces the challenges of clogging, hindrance to sedimentation due to the formation of hydrophobic sludge along with lipids, flocculation of sludge with poor activity, dewatering of sludge due to the presence of lipids, and formation of aminated offensive odors. The present investigation employed baffled moving bed biofilm reactor (BMBBR), up-flow anaerobic sludge blanket (UASB) reactor, fluidized immobilized cell carbon oxidation (FICCO) reactor, and chemoautotrophic activated carbon oxidation (CAACO) reactors in series to treat FPWW.

View Article and Find Full Text PDF

N-Vanillylnonanamide, a natural product from capsicum oleoresin, as potential inhibitor of collagen fibrillation.

Int J Biol Macromol

August 2020

Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600020, India. Electronic address:

Inhibition of collagen fibrillation by small molecules is of growing interest to develop therapeutics for the illnesses related to excess deposition of collagen. In this context, we have studied the inhibitory effect of N-Vanillylnonanamide (NVA), a natural product from capsicum oleoresin and an analog of capsaicin (a known inhibitor of collagen fibrillation), on collagen self-assembly that leads to fibrillation in vitro. Commercially, capsaicin was found to be expensive than NVA.

View Article and Find Full Text PDF

Hybrid silver (Ag)-gold (Au) nanoparticles (NPs) with different sizes and compositions were synthesized. Ag/Au alloy and Ag@Au core-shell type NPs were prepared from Ag and Au with various ratios using the COCO gemini surfactant, 1,6-bis (,-hexadecyldimethylammonium) adipate (COCOGS), 16-6-16 as a stabilizer. The formation of the Ag/Au alloy and Ag@Au core-shell was confirmed by UV-visible absorption spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) and selected area electron diffraction (SAED) patterns.

View Article and Find Full Text PDF

The optimum condition at which the halophilic salt-tolerant bacterium (MTCC 3712) produces the maximum amount of extracellular polymeric substances (EPS) was investigated experimentally using response surface methodology based on the central composite design (CCD). Hyper-saline medium containing 1.5% w/v NaCl enriched nutrient medium with 1.

View Article and Find Full Text PDF

Influence of pH on interaction of silver nanoparticles - protein: Analyses by spectroscopic and thermodynamic ideology.

Colloids Surf B Biointerfaces

December 2019

Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science & Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India. Electronic address:

To investigate the interaction between bovine serum albumin (BSA) and silver nanoparticles (AgNPs) at five different pHs (below (3.0 and 4.0), above (7.

View Article and Find Full Text PDF

Porous materials of nitrogen doped graphene oxide@SnO electrode for capable supercapacitor application.

Sci Rep

September 2019

Department of Mechanical Engineering, Inha University, Inha-ro 100, Nam-gu, Incheon, 402-751, Republic of Korea.

The porous materials of SnO@NGO composite was synthesized by thermal reduction process at 550 °C in presence ammonia and urea as catalyst. In this process, the higher electrostatic attraction between the SnO@NGO nanoparticles were anchored via thermal reduction reaction. These synthesized SnO@ NGO composites were confirmed by Raman, XRD, XPS, HR-TEM, and EDX results.

View Article and Find Full Text PDF

Bacterial biomolecule-mediated nanoparticle (NP) synthesis constitutes a reliable, eco-friendly approach that ameliorates green-chemistry principles. In this study, stable silver nanoparticles were synthesized by exposing aqueous silver ions to an extracellular diffusible pigment produced by (PA6) under optimized laboratory conditions. Spectroscopic and microscopic analyses showed the typical characteristics of silver with an average size of ∼28.

View Article and Find Full Text PDF

The impact caused by dye effluent discharge on the environment is well known. The study explores a hybrid method of combining Fenton oxidation with biological treatment by a defined bacterial consortium for the biodegradation of an effluent containing toxic azo dye (acid blue 113). In actual treatment process, the fluctuation in toxic load and presence of other dyeing chemical inhibits the activity of the bacterial consortium.

View Article and Find Full Text PDF

'Go green' has also been implied to nanotechnology by harbouring eco-benign principle for a cleaner production of silver nanoparticles (AgNPs). This was achieved using a nitrate reducing Bacillus subtilis L1 (KT266579.1) inhabiting rhizosphere soil under optimized laboratory conditions, highlighting on its antibacterial modus operandi.

View Article and Find Full Text PDF

Crosslinking of proteins such as collagen for enhanced stability and mechanical properties is an intriguing area in the context of both biomedical and industrial applications. Herein, we have shown the crosslinking of collagen fibers using visible light in a green solvent, ethanol, in the presence of photosensitizers such as methylene blue (Mb) and erythrosine B (Eb). The visible light induced crosslinking increases the shrinkage temperature of collagen fibers from 67 to 100 °C in a concentration dependent manner (1.

View Article and Find Full Text PDF

The aim of this study was to degrade proteins in high-total dissolved solids (TDS)-containing wastewater produced during the soaking process in tanneries (tannery-TDS wastewater) using a halotolerant protease-assisted nanoporous carbon catalyst (STPNPAC). A halotolerant protease was obtained from the halophile, Lysinibacillus macroides, using animal fleshing as the substrate. The protease was immobilized using ethylene diamine (EDA)/glutaraldehyde functionalized nanoporous activated carbon (EGNPAC).

View Article and Find Full Text PDF