44 results match your criteria: "Central Leather Research Institute (CSIR-CLRI)[Affiliation]"

The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.

View Article and Find Full Text PDF

Facile preparation of solid gelatin foams by a water-lean batch foaming process.

Int J Biol Macromol

December 2024

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, Tamil Nadu, India.

Existing polystyrenic and polyolefinic packaging foams are non-biodegradable, and persist in the environment for hundreds of years. Gelatin foams are an interesting alternative, given their biodegradability, biocompatibility, solution-based processability, low cost, and non-toxicity. However, current methods for preparing gelatin foams, such as freeze-drying, microfluidic foaming, and batch foaming, are not suitable for high-volume production.

View Article and Find Full Text PDF

The efficient pentaflurophenol-catalyzed Pictet-Spengler cyclization was carried out which led to the formation of spirobenzazepinoindole. This article examines the methods and modifications of Pictet-Spengler cyclization in the synthesis of intricate organic compounds, emphasizing its significance in drug discovery and development. This reaction generally entails the condensation of an amine with an aldehyde or ketone, succeeded by an intramolecular cyclization step catalyzed by pentafluorophenol, an alternate for metal-mediated catalysts due to its facile characteristics which render it an invaluable asset in organic synthesis and catalysis.

View Article and Find Full Text PDF

The increasing global energy demand and environmental pollution necessitate the development of alternative, sustainable energy sources. Hydrogen production through electrochemical methods offers a carbon-free energy solution. In this study, we have designed novel boron nitride analogues (BNyne) and investigated their stability and electronic properties.

View Article and Find Full Text PDF

Hydrogels are indispensable for a variety of applications. Conventional biomaterial-based hydrogels, typically made from proteins or polysaccharides, often suffer from high costs, poor mechanical properties, and limited chemical functionality for modification. In this work, we present a novel hydrogel developed from modified castor oil, which is a renewable and cost-effective resource.

View Article and Find Full Text PDF

Mechanistic insights on stabilization and destabilization effect of ionic liquids on type I collagen fibrils.

J Mech Behav Biomed Mater

December 2024

Inorganic and Physical Chemical Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen.

View Article and Find Full Text PDF

DFT and machine learning guided investigation into the design of new dual-atom catalysts based on α-2 graphyne.

Phys Chem Chem Phys

October 2024

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

The realm of atomic catalysts has witnessed notable advancements; yet, the predominant focus remains on single atomic catalysts (SACs). The exploration and successful implementation of dual atomic catalysts (DACs) pose intricate challenges, primarily concerning thermodynamic stability and optimal metallic composition. To address these issues, we present a comprehensive theoretical investigation of α-2 graphyne (GPY)-based DACs, synthesized in-house with a keen focus on formation stability.

View Article and Find Full Text PDF

The syntheses of novel spirobenzazepinoindole derivatives has been achieved through a highly efficient and synthetic route. The approach involves a two-step reaction, utilizing indole derivatives, 2-amino benzyl alcohol, and ninhydrin as key starting materials under mild reaction conditions. The reaction proceeds via a sequential cascade process involving cyclization, condensation and spiro-annulation, leading to the formation of the spirobenzazepinoindole core structure in good to excellent yields.

View Article and Find Full Text PDF

Green Nanoengineered Fabrics: Waste-Derived Polyphenol-Zinc@ Silica Core-Shell Reactive Janus Nanoparticles for Functional Fabrics.

ACS Appl Mater Interfaces

July 2024

Leather Processing Technology Department, Council of Scientific and Industrial Research, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600020, India.

Fabricating Janus nanoparticle-functionalized fabrics with UV protection, strength enhancement, self-cleaning properties, and wash durability, with a biocompatible nature, is crucial in modern functional fabrics engineering. Particularly, tailoring multifunctional nanoparticles capable of exhibiting several distinct properties, utilizing low-cost raw materials, and adhering to green chemistry principles is pivotal. A fabrication strategy for developing multifunctional reactive Janus nanoparticles, utilizing waste-derived natural polyphenol (quercetin-3-glucuronide, myricetin-3-galactoside, gossypin, phlorizin, kaempferol, myricetin-3-arabinoside)-integrated zinc-silica core-shell Janus nanoparticles with UV protection, strength enhancement, and self-cleaning properties, is proposed.

View Article and Find Full Text PDF

Collagen fibrils serve as the building blocks of the extracellular matrix, providing a resilient and structural framework for tissues. However, the bundling of collagen fibrils is of paramount importance in maintaining the structural integrity and functionality of various tissues in the human body. In this scenario, there is limited exploration of molecules that promote the bundling of collagen fibrils.

View Article and Find Full Text PDF

The development of small-molecule organic solar cells with the required efficiency depends on the information obtained from molecular-level studies. In this context, 39 small-molecule donors featuring isoindigo as an acceptor moiety have been meticulously crafted for potential applications in bulk heterojunction organic solar cells. These molecules follow the D-A-D-A-D and D-A-π-D-π-A-D framework.

View Article and Find Full Text PDF

Development of masked silica tanning system for sustainable leather production.

Environ Sci Pollut Res Int

April 2024

Biochemistry & Biotechnology Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Sardar Patel Road, Adyar, Chennai, 600020, India.

Amid mounting pressure on the long-term recyclability of chromium in tanned leather and the associated environmental hazards, the quest for an alternative, cleaner tanning system has gained tremendous momentum. In this context, our study explores the remarkable potential of silicates as a versatile platform for skin/hide tanning, circumventing the inherent risks and ecological threats posed by chromium exposure and leaching. We present an alternative approach of using a silica-based tanning system, employing a Taguchi model, to optimize a masked silica (MaSil) tanning product/process for achieving effective collagen stabilization.

View Article and Find Full Text PDF

Structural and mechanical behavior of type-I collagen fibrils in presence of induced electrostatic interactions through ionic liquids.

Biophys Chem

April 2024

Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai 600 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Tuning the self-assembly of collagen has broad applications in the biomedical field owing to their desired biological performance as collagenous materials with tunable functionalities can further determine cellular responses. In this work, an attempt has been made to tune the self-assembly of collagen using ionic liquids, viz., imidazolium chloride (IC) and choline dihydrogen phosphate (CDHP) at its physiological pH, followed by probing assembled systems using various characterization methods.

View Article and Find Full Text PDF

In this study, we present a facile method for introducing hydrophilic ureido groups (NH-CO-NH-) into chitosan using a microwave-assisted reaction with molten urea, with the aim of enhancing chitosan's interaction with blood components for improved hemostasis. The formation of the ureido groups through nucleophilic addition reaction between the amine groups in chitosan and in situ generated isocyanic acid was confirmed by FTIR, CP/TOSS C NMR, and CP/MAS N NMR spectroscopic techniques. However, in stark contrast to the glucans, the said modification introduced extensive crosslinking in chitosan.

View Article and Find Full Text PDF

An efficient iodine-catalyzed method for synthesizing imidazo[1,2-]pyrazines and imidazo[1,2-]pyridines one-pot three-component condensations has been reported. The product, generated by the reaction between an aryl aldehyde and 2-aminopyridine or 2-aminopyrazine, undergoes [4 + 1] cycloaddition with -butyl isocyanide, affording the corresponding imidazopyrazine and imidazopyridine derivatives in good yields. The photophysical properties of these new fluorescent derivatives are also presented.

View Article and Find Full Text PDF

The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (, oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H production), gaseous fuel (H and CH) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies.

View Article and Find Full Text PDF

The successful N-carboxymethylation and concomitant crosslinking of solid chitosan upon heating its mixture with solid monochloroacetic acid, without the use of solvents or catalysts, is reported. The N-carboxymethylation was confirmed through the analysis of the partially depolymerized product using NMR spectroscopy, as well as a control reaction with lysine. This transformation was facilitated by the nucleophilic nature of the free amine group in the repeating unit of chitosan, which possesses lone pair of electrons capable of attacking the carbon center bearing the leaving group and displacing the leaving group in a concerted manner.

View Article and Find Full Text PDF

In the present study, a novel and unconventional two-dimensional (2D) material with Dirac electronic features has been designed using sulflower with the help of density functional theory methods and first principles calculations. This 2D material comprises of hetero atoms (C, S) and belongs to the tetragonal lattice with P /nmm space group. Scrutiny of the results show that the 2D nanosheet exhibits a nanoporous wave-like geometrical structure.

View Article and Find Full Text PDF

Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose-collagen, KFCC). We loaded it with magnetic bimetallic FeO@TiO (BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil-water separation.

View Article and Find Full Text PDF

Fibroblast Growth Receptor Factor (FGFR) are a family of proteins which are, in addition to their biological role, are involved in various pathological functions, such as cancer cellular proliferation, and metastasis. Deregulation of FGFRs at various points could result in malignancy. A conformational transition of the DFG (Asp-Phe-Gly) motif can switch the enzyme from a catalytically active (DFG-in) to an inactive (DFG-out) state.

View Article and Find Full Text PDF

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus.

View Article and Find Full Text PDF
Article Synopsis
  • India is a major leather producer, generating 150,000 tons of solid waste daily, much of which is rich in protein and lipids that could be used for biofuel production.
  • The pre-tanning processes contribute about 87,150 tons of this waste, while the rest comes from various tanning operations, highlighting a significant potential for energy recovery.
  • Utilizing these leather solid wastes for biogas and biodiesel production could provide economic benefits and have a positive environmental impact as an untapped resource for India's energy supply.
View Article and Find Full Text PDF

Conjugated polymer frameworks (CPFs) have recently sparked tremendous research interest due to their broad potentials in various frontline application areas such as photocatalysis, sensing, gas storage, energy storage, etc. These framework materials, without sidechains or functional groups on their backbone, are generally insoluble in common organic solvents and less solution processable for further device applications. There are few reports on metal-free electrocatalysis, especially oxygen evolution reaction (OER) using CPF.

View Article and Find Full Text PDF

Bismuth vanadate (BiVO) is one of the best bismuth-based semiconducting materials because of its narrow band gap energy, good visible light absorption, unique physical and chemical characteristics, and non-toxic nature. In addition, BiVO with different morphologies has been synthesized and exhibited excellent visible light photocatalytic efficiency in the degradation of various organic pollutants, including volatile organic compounds (VOCs). Nevertheless, the commercial scale utilization of BiVO is significantly limited because of the poor separation (faster recombination rate) and transport ability of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

In recent years, the demand for high-quality biofuels from renewable sources has become an aspirational goal to offer a clean environment by alternating the depleting fossil fuels to meet future energy needs. In this aspect, biohythane production from wastes has received extensive research interest since it contains superior fuel characteristics than the promising conventional biofuel i.e.

View Article and Find Full Text PDF