1,502 results match your criteria: "Central Leather Research Institute[Affiliation]"

For the design of an efficient drug delivery system utilizing an ionic liquid (IL) as a carrier, it is prudent to gain molecular/atomistic level insights of a drug with IL in terms of binding and dynamics. In this scenario, the influence of anionic counterpart of imidazolium-based ILs, namely, 1-butyl-3-methyl-imidazolium octyl sulfate [BMIM][OSU] and 1-butyl-3-methyl-imidazolium chloride [BMIM][Cl] in their submicellar region ([IL] = 20 mM) on the model water-soluble anticancer drug doxorubicin hydrochloride (DOX) was probed by employing an arsenal of nuclear magnetic resonance (NMR) approaches. The salient feature of the present study includes the significant interaction of DOX with [BMIM][OSU], whereas the lack of such an interaction with [BMIM][Cl] is gauged by H NMR translation self-diffusometry and is further corroborated by C chemical shift perturbation.

View Article and Find Full Text PDF

Modulation of angiogenic switch in reprogramming browning and lipid metabolism in white adipocytes.

Biochim Biophys Acta Mol Cell Biol Lipids

January 2024

Biological Materials Laboratory, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Thermogenic activation via trans-and de novo browning of white adipocytes is a promising strategy to accelerate lipid metabolism for regulating obesity-related disorders. In this study, we investigated the intricate interplay between angiogenic regulation and browning in white adipocytes using the bioactive compound, resveratrol (Rsv). Rsv has previously been documented for its regulatory influence on the trans and de novo browning of white adipocytes.

View Article and Find Full Text PDF

In recent years, intensive research efforts have focused on translating biomass waste into value-added carbon materials broadcasted for their significant role in energy and environmental applications. For the first time, high-performance carbonaceous materials for energy storage applications were developed from the multi-void structure of the boat-fruited shells of Sterculia Foetida (SF). In that view, synthesized mesoporous graphitic activated carbon (g-AC) via the combination of carbonization at various elevating temperatures of 700, 800, and 900 °C, respectively, and alkali activation by KOH, with a high specific surface area of 1040.

View Article and Find Full Text PDF

Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO) ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO) .

View Article and Find Full Text PDF

The use of collagen is the recent development in various medical fields. Huge quantities of hide and skin trimmings are generated during the leather processing are wasted or underutilized. Trimmings contain collagen which can be beneficially extracted and utilized for high value products.

View Article and Find Full Text PDF

The increasing energy demands in society and industrial sectors have inspired the search for alternative energy sources that are renewable and sustainable, also driving the development of clean energy storage and delivery systems. Various solid-state materials (, oxides, sulphides, polymer and conductive nanomaterials, activated carbon and their composites) have been developed for energy production (water splitting-H production), gaseous fuel (H and CH) storage and electrochemical energy storage (batteries and supercapacitors) applications. Nevertheless, the low surface area, pore volume and conductivity, and poor physical and chemical stability of the reported materials have resulted in higher requirements and challenges in the development of energy production and energy storage technologies.

View Article and Find Full Text PDF

The leather manufacturing sector is actively pursuing organic alternatives to replace the utilization of inorganic tanning chemicals such as chromium, zirconium, and aluminum due to concerns over their environmental impact. Although glutaraldehyde has been considered a feasible alternative, it still falls short in providing the leather with greater tensile properties and is also considered to be toxic. In this study, we report the synthesis of a sulfonated gallic acid-based epoxide (GSE) and evaluate its performance as a metal-free tanning compound.

View Article and Find Full Text PDF

Silica-based nanoparticles have found application in the development of biocomposites involving reconstituted collagen in tissue engineering and wound healing, and leather modification, specifically targeting collagen fibers. However, a comprehensive investigation into the interaction between collagen-silica nanoparticles and different forms of collagen using biophysical methods remains unexplored. In this study, we examined the interaction between silica (SiO) nanoparticles and collagen in its fiber, microfibril, and monomer forms through high-resolution scanning electron microscopy, circular dichroism, Fourier-transform infrared spectroscopy, fluorescence analysis, zeta potential measurements, and turbidity assays.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used solid-state NMR to study the conformations of differently shaped mesogens in the liquid crystalline phase.
  • The mesogens examined included a rod-like structure, a three-ring core linked to a phenyl ring, and a trimesic acid with side arms.
  • The study found distinct order parameter (S) values for each structure, leading to the proposal of a tripod-like conformation for the trimesic acid mesogen rather than the expected λ shape.
View Article and Find Full Text PDF

Polymorphism is common in both in vitro and in vivo amyloid fibrils formed by the same peptide/protein. However, the differences in their self-assembled structures at the amino acid level remain poorly understood. In this study, we utilized isotope-edited vibrational circular dichroism (VCD) on a well-known amyloidogenic peptide fragment (NFGAIL) of human islet amyloid polypeptide (IAPf) to investigate the structural polymorphism.

View Article and Find Full Text PDF

The successful N-carboxymethylation and concomitant crosslinking of solid chitosan upon heating its mixture with solid monochloroacetic acid, without the use of solvents or catalysts, is reported. The N-carboxymethylation was confirmed through the analysis of the partially depolymerized product using NMR spectroscopy, as well as a control reaction with lysine. This transformation was facilitated by the nucleophilic nature of the free amine group in the repeating unit of chitosan, which possesses lone pair of electrons capable of attacking the carbon center bearing the leaving group and displacing the leaving group in a concerted manner.

View Article and Find Full Text PDF

Enhancing the effectiveness of Alkaline Phosphatase and bone matrix proteins by tunable metal-organic composite for accelerated mineralization.

Int J Biol Macromol

December 2023

Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India; Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India. Electronic address:

The irregular expression of bone matrix proteins occurring during the mineralization of bone regeneration results in various deformities which poses a major concern of orthopedic reconstruction. The limitations of the existing reconstruction practice paved a way for the development of a metal-organic composite [TQ-Sr-Fe] with Metal ions strontium [Sr] and iron [Fe] and a biomolecule Thymoquinone [TQ] in an attempt to enhance the bone mineralization due to their positive significance in osteoblast differentiation, proliferation and maturation. TQ-Sr-Fe was synthesized by in-situ coprecipitation and subjected to various characterization to determine their nature, compatibility and osteogenic efficiency.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) refer to various partially reduced oxygen moieties that are naturally generated due to biochemical processes. Elevated formation of ROS leads to damage to biomolecules, resulting in oxidative stress and cell death. The increased level of ROS also affects therapeutics based on stem cell transplantation.

View Article and Find Full Text PDF

In the present study, a novel and unconventional two-dimensional (2D) material with Dirac electronic features has been designed using sulflower with the help of density functional theory methods and first principles calculations. This 2D material comprises of hetero atoms (C, S) and belongs to the tetragonal lattice with P /nmm space group. Scrutiny of the results show that the 2D nanosheet exhibits a nanoporous wave-like geometrical structure.

View Article and Find Full Text PDF

Acute liver injury is caused by various factors, including oxidative stress and inflammation. Coleus vettiveroides, an ayurvedic medicinal plant, is known to possess antioxidant, antibacterial, and antidiabetic properties. In this current study, we investigated the protective effect of C.

View Article and Find Full Text PDF

Water pollution from synthetic dyes and oil spills has a significant impact on the environment and living species. Here, we developed a low-cost, environmentally friendly and easily biodegradable magnetic hybrid bio-sponge nanocomposite from renewable resources such as collagen and cellulose (Kenaf fibre cellulose-collagen, KFCC). We loaded it with magnetic bimetallic FeO@TiO (BFT) NPs to produce a photocatalyst material (KFCC-BFT) for the treatment of colored wastewater as well as a sorbent for oil-water separation.

View Article and Find Full Text PDF

Fibroblast Growth Receptor Factor (FGFR) are a family of proteins which are, in addition to their biological role, are involved in various pathological functions, such as cancer cellular proliferation, and metastasis. Deregulation of FGFRs at various points could result in malignancy. A conformational transition of the DFG (Asp-Phe-Gly) motif can switch the enzyme from a catalytically active (DFG-in) to an inactive (DFG-out) state.

View Article and Find Full Text PDF

Collagen-based materials have a wide range of applications in wound care, tendon repair, cartilage repair, etc. Improving certain properties such as hydrophobicity can diversify the application areas. In this work, we investigated the noncovalent interactions of suitably functionalized silica nanoparticles with collagen for the possibility of improving hydrophobicity.

View Article and Find Full Text PDF

The purification and biochemical characterization of the extracellular alpha amylase from MTCC5152 were studied. The combined use of ion exchange and gel filtration chromatographic methods were used for purification studies. The specific activity was significantly increased (33 fold) and 19.

View Article and Find Full Text PDF

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus.

View Article and Find Full Text PDF
Article Synopsis
  • India is a major leather producer, generating 150,000 tons of solid waste daily, much of which is rich in protein and lipids that could be used for biofuel production.
  • The pre-tanning processes contribute about 87,150 tons of this waste, while the rest comes from various tanning operations, highlighting a significant potential for energy recovery.
  • Utilizing these leather solid wastes for biogas and biodiesel production could provide economic benefits and have a positive environmental impact as an untapped resource for India's energy supply.
View Article and Find Full Text PDF

Biopolymer collagen-chitosan scaffold containing Aloe vera for chondrogenic efficacy on cartilage tissue engineering.

Int J Biol Macromol

September 2023

Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia. Electronic address:

The chondrogenic efficacy of aloe vera blended collagen-chitosan (COL-CS-AV) porous scaffold was investigated using articular chondrocytes in a standard condition. Cytocompatibility was analyzed using fluorescent dyes (calcein AM/ethidium bromide) and the viable cells were quantified by MTT assay. Glycosaminoglycan (GAG) content of ECM was estimated by using 1, 9-Dimethyl methylene Blue (DMMB).

View Article and Find Full Text PDF

Dermatan sulfate is one of the major glycosaminoglycan (GAG) present in the animal hides, which is a waste/byproduct from meat industry. Efficient utilization of these meat industry wastes is garnering attention because these wastes render a possibility for their conversion into useful products. With the increased concerns over health, various initiatives have been developed to permit more efficient utilization of these by-products and thereby directly impacting environmental sustainability.

View Article and Find Full Text PDF

Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing.

Int J Biol Macromol

August 2023

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India. Electronic address:

Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based antibacterial wound dressing would be a boon to the existing dressing as the moist environment will maintain the cooling temperate and proper exchange of atmosphere around the wound. In the present study, the multifunctional graphene with silver and ε-Poly-l-lysine reinforced into the chitosan matrix (CGAPL) was prepared as a nanobiocomposite wound dressing.

View Article and Find Full Text PDF

The Siddha system of medicine is an ancient medical lineage that is practiced primarily in the southern part of India. Siddha system of medicine has been in practice for thousands of years with documented evidence dating back to the 6th century BCE. According to siddha system of medicine's basic fundamental principle, the human body is made up of 96 thathuvam (primary components), which encompass physical, physiological, psychological, and intellectual aspects.

View Article and Find Full Text PDF