48 results match your criteria: "Central Laboratory of Harbin Medical University[Affiliation]"
Int J Biol Macromol
January 2025
Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China. Electronic address:
Pulmonary hypertension (PH) is a malignant cardiovascular disease with a complex etiology. 5-Methylcytosine (m5C) is a post-transcriptional RNA modification identified in both stable and highly abundant RNAs, with a lower frequency of occurrence in circular RNAs (circRNAs). Nevertheless, the function of m5C-modified circRNAs in the pathogenesis of PH remains uncertain.
View Article and Find Full Text PDFBackground: Unveiling pro-proliferation genes involved in crosstalk between pulmonary artery endothelial cells and pulmonary artery smooth muscle cells (PASMCs) are important to improving the therapeutic outcome of pulmonary hypertension (PH). Although growing studies have shown that super-enhancers (SEs) play a pivotal role in pathological and physiological processes, the SE-associated genes in PH and their impact on PASMC proliferation remain largely unexplored.
Methods And Results: We used serotype 5 adenovirus-associated virus to interfere with syndecan-4 and constructed an SU5416 combined with hypoxia-PH model.
Respir Res
October 2024
Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, P. R. China.
Introduction: Pyroptosis, inflammatory necrosis of cells, is a programmed cell death involved in the pathological process of diseases. Endoplasmic reticulum stress (ERS), as a protective stress response of cell, decreases the unfold protein concentration to inhibit the unfold protein agglutination. Whereas the relationship between endoplasmic reticulum stress and pyroptosis in pulmonary hypertension (PH) remain unknown.
View Article and Find Full Text PDFiScience
October 2024
Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China.
Eur J Pharmacol
November 2024
Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China. Electronic address:
Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs).
View Article and Find Full Text PDFGlycolysis is a major determinant of pulmonary artery smooth muscle cell (PASMC) proliferation in pulmonary hypertension (PH). Circular RNAs (circRNAs) are powerful regulators of glycolysis in multiple diseases; however, the role of circRNAs in glycolysis in PH has been poorly characterized. The aim of this study was to uncover the regulatory mechanism of a new circRNA, circNAP1L4, in human pulmonary artery smooth muscle cell (HPASMC) proliferation through the host protein NAP1L4 to regulate the super-enhancer-driven glycolysis gene hexokinase II (HK II).
View Article and Find Full Text PDFEur J Pharmacol
October 2024
Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, PR China. Electronic address:
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) contributes to vascular remodeling in hypoxic pulmonary hypertension (PH). Recent studies have suggested that circular RNAs (circRNAs) may play important roles in the vascular remodeling of hypoxia-induced PH. However, whether circRNAs cause pulmonary vascular remodeling by regulating the phenotypic transformation in PH has not been investigated.
View Article and Find Full Text PDFInt J Biol Macromol
May 2024
Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, PR China. Electronic address:
Am J Respir Cell Mol Biol
June 2024
Central Laboratory of Harbin Medical University-Daqing, College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China; and.
Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH).
View Article and Find Full Text PDFChin J Physiol
November 2023
Central Laboratory of Harbin Medical University, Daqing, China; Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China.
Aberrant glycolytic reprogramming is involved in lung cancer progression by promoting the proliferation of non-small cell lung cancer cells. Paeonol, as a traditional Chinese medicine, plays a critical role in multiple cancer cell proliferation and inflammation. Acyl-CoA dehydrogenase (ACADM) is involved in the development of metabolic diseases.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2023
Central Laboratory of Harbin Medical University (Daqing), PR China (C.M., X.W., L.Z., X. Zhu, J.B., S.H., J.M., X.G., D.Z.).
Background: Circular RNAs (circRNAs) have been implicated in pulmonary hypertension progression through largely unknown mechanisms. Pulmonary artery endothelial cell (PAEC) dysfunction is a hallmark in the pathogenesis of pulmonary hypertension. However, the specific role of circular RNAs in PAEC injury caused by hypoxia remains unclear.
View Article and Find Full Text PDFBackground Aberrant expression of circular RNAs (circRNAs) contributes to the initiation and progression of pulmonary hypertension (PH). Hypoxia-inducible factor (HIF) is a well-known modulator of hypoxia-induced PH. The role and underlying mechanism of circRNAs in the regulation of HIF expression remains elusive.
View Article and Find Full Text PDFJ Mol Cell Cardiol
March 2023
College of Pharmacy, Harbin Medical University, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), PR China; Central Laboratory of Harbin Medical University (Daqing), PR China; State Province Key Laboratories of Biomedicine-Pharmaceutics of China, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, PR China.. Electronic address:
Pulmonary hypertension (PH) is a serious and fatal disease characterized by pulmonary vasoconstriction and pulmonary vascular remodeling. The excessive autophagy of pulmonary artery smooth muscle cells (PASMCs) is one of the important factors of pulmonary vascular remodeling. A number of studies have shown that circular RNA (circRNA) can participate in the onset of PH.
View Article and Find Full Text PDFMol Med
October 2022
Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China.
Background: Pyroptosis is a form of programmed cell death involved in the pathophysiological progression of hypoxic pulmonary hypertension (HPH). Emerging evidence suggests that N6-methyladenosine (m6A)-modified transcripts of long noncoding RNAs (lncRNAs) are important regulators that participate in many diseases. However, whether m6A modified transcripts of lncRNAs can regulate pyroptosis in HPH progression remains unexplored.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2023
Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China. Electronic address:
Hypoxia induce right ventricular dysfunction in human heart, but the molecular mechanism remains limited. As known, cyclooxygenases (COX) and lipoxygenases (LOX) play a key role in the cardiovascular system under hypoxia. 3,4',5,7-Tetrahydroxyflavone (THF), which widely exists in a variety of plants and vegetables, is famous for good ability to relieve cardiac injury, but the mechanism remains to be further understood.
View Article and Find Full Text PDFEur J Pharmacol
September 2022
College of Basic Medical Sciences, Harbin Medical University (Daqing), Daqing, 163319, PR China. Electronic address:
The higher norepinephrine (NE) concentration induced by sympathetic nerve hyperactivation participated in pulmonary artery smooth muscle cells (PASMCs) over-proliferation and led to pulmonary vascular remodeling (PVR), which played an important role in pulmonary artery hypertension (PAH). However, the underlying mechanism by which NE induced PASMCs proliferation had not been fully elucidated. In the present study, we found that prazosin, the inhibitor of α-AR, reversed hypoxia-induced changes in pulmonary circulatory function which were analyzed by echocardiography to measure pulmonary artery acceleration time (PAT) and pulmonary arterial velocity time integral (PAVTI) and right heart catheterization to test right ventricular systolic pressure (RVSP), respectively.
View Article and Find Full Text PDFMol Ther Nucleic Acids
June 2022
Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, P.R. China.
Pyroptosis is involved in pulmonary hypertension (PH); however, whether this process is regulated by long non-coding RNAs (lncRNAs) is unclear. Some lncRNAs encode peptides; therefore, whether the regulation of pyroptosis in PH depends on lncRNAs themselves or their encoded peptides needs to be explored. We aimed to characterize the role of the peptide RPS4XL encoded by lnc-Rps4l and its regulatory mechanisms during pyroptosis in PH.
View Article and Find Full Text PDFJ Pharm Biomed Anal
April 2022
Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjiang, PR China. Electronic address:
Currently, there have been breakthroughs in the study of the underlying mechanisms of pulmonary arterial hypertension, but treatment is still challenging. The aim of this study was explore the effect of kaempferol in PAH and discover the mechanism of this process. First, we assessed the effect of kaempferol in animal models of PAH.
View Article and Find Full Text PDFCell Biosci
January 2022
Central Laboratory of Harbin Medical University (Daqing), 39 Xinyang Road, Daqing, 163319, People's Republic of China.
Background: Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main cause of hypoxic pulmonary hypertension (PH), and mitochondrial homeostasis plays a crucial role. However, the specific molecular regulatory mechanism of mitochondrial function in PASMCs remains unclear.
Methods: In this study, using the CCK8 assay, EdU incorporation, flow cytometry, Western blotting, co-IP, mass spectrometry, electron microscopy, immunofluorescence, Seahorse extracellular flux analysis and echocardiography, we investigated the specific involvement of apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase in regulating mitochondrial energy metabolism and mitophagy in PASMCs.
Cell Death Dis
December 2021
College of Pharmacy, Harbin Medical University, Harbin, 150081, P.R. China.
Cell Death Dis
April 2021
College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), 163319, Daqing, P. R. China.
Circular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2021
Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.).
[Figure: see text].
View Article and Find Full Text PDFMol Ther
April 2021
Biopharmaceutical Key Laboratory of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, P.R. China; Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China. Electronic address:
Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2020
Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, PR China.
Emerging evidence has suggested that circular RNAs (circRNAs) are involved in multiple physiological processes and participate in a variety of human diseases. However, the underlying biological function of circRNAs in pulmonary hypertension (PH) is still ambiguous. Herein, we investigated the implication and regulatory effect of a typical circRNA, CDR1as, in the pathological process of vascular calcification in PH.
View Article and Find Full Text PDF