167 results match your criteria: "Centers for Health Research[Affiliation]"

Chronic exposure to benzene results in progressive decline of hematopoietic function and may lead to the onset of various disorders, including aplastic anemia, myelodysplastic syndrome, and leukemia. Damage to macromolecules resulting from benzene metabolites and misrepair of DNA lesions may lead to changes in hematopoietic stem cells (HSCs) that give rise to leukemic clones. We have shown previously that male mice exposed to benzene by inhalation were significantly more susceptible to benzene-induced toxicities than females.

View Article and Find Full Text PDF

Phytoestrogens are plant-derived compounds with estrogen-like activities. Certain foods such as soy-derived products are known to have high levels of phytoestrogens, and about 25% of commercial infant formulas used in the United States are soy-based. One of the most important phytoestrogens is the isoflavone genistein.

View Article and Find Full Text PDF

Formaldehyde inhalation at 6 ppm and above causes nasal squamous cell carcinoma (SCC) in F344 rats. The quantitative implications of the rat tumors for human cancer risk are of interest, since epidemiological studies have provided only equivocal evidence that formaldehyde is a human carcinogen. Conolly et al.

View Article and Find Full Text PDF

The three beta AR (beta-adrenergic receptor) subtypes (beta(1)AR, beta(2)AR, and beta(3)AR) are members of the large family of G protein-coupled receptors, each of which is coupled to G alpha s and increases in intracellular cAMP levels. In white adipose tissues, catecholamine activation of the beta ARs leads to the mobilization of stored fatty acids and regulates release of several adipokines, whereas in brown adipose tissue they stimulate the specialized process of adaptive nonshivering thermogenesis. Noteworthy, in most models of obesity the beta AR system is dysfunctional, and its ability to stimulate lipolysis and thermogenesis are both impaired.

View Article and Find Full Text PDF

The goal of this study was to characterize the toxicity of hydrogen sulfide (H2S), including nasal and pulmonary effects, in adult male and female Fischer-344 and Sprague-Dawley rats and B6C3F1 mice. Animals underwent whole-body exposure to 0, 10, 30, or 80 ppm H2S for 6 h/day for at least 90 days. Exposure to 80 ppm H2S was associated with reduced feed consumption during either the first exposure week (rats) or throughout the 90-day exposure (mice).

View Article and Find Full Text PDF

Growing evidence suggests that nasal deposition and transport along the olfactory nerve represents a route by which inhaled manganese and certain other metals are delivered to the rodent brain. The toxicological significance of olfactory transport of manganese remains poorly defined. In rats, repeated intranasal instillation of manganese chloride results in injury to the olfactory epithelium and neurotoxicity as evidenced by increased glial fibrillary acidic protein (GFAP) concentrations in olfactory bulb astrocytes.

View Article and Find Full Text PDF

In this study, we examined whether gender or age influences the pharmacokinetics of manganese sulfate (MnSO(4)) or manganese phosphate (as the mineral form hureaulite). Young male and female rats and aged male rats (16 months old) were exposed 6 h day(-1) for 5 days week(-1) to air, MnSO(4) (at 0.01, 0.

View Article and Find Full Text PDF

Exposure to di (n-butyl) phthalate (DBP) in utero impairs the development of the male rat reproductive tract. The adverse effects are due in part to a coordinated decrease in expression of genes involved in cholesterol transport and steroidogenesis with a resultant reduction in testosterone production in the fetal testis. To determine the dose-response relationship for the effect of DBP on steroidogenesis in fetal rat testes, pregnant Sprague-Dawley rats received corn oil (vehicle control) or DBP (0.

View Article and Find Full Text PDF

Ethylene (74-85-1) is an important petrochemical and is produced endogenously. It is metabolized to ethylene oxide (EO) by cytochrome P450. We studied the inhibition of cytochrome P450 activity during exposure to ethylene, and verified that this inhibition was reflected in the concentration of EO in the blood.

View Article and Find Full Text PDF

Steroid hormone biotransformation and xenobiotic induction of hepatic steroid metabolizing enzymes.

Chem Biol Interact

April 2004

CIIT Centers for Health Research, 6 Davis Drive, P.O. Box 12137, Research Triangle Park, NC 27709-2137, USA.

Normal reproductive development depends on the interplay of steroid hormones with their receptors at specific tissue sites. The concentrations of hormone ligands in the circulation and at target sites are maintained through coordinated regulation on steroid biosynthesis and degradation. Changed bioavailability of steroids, through alteration of steroidogenesis or biotransformation rates, leads to changes in endocrine function.

View Article and Find Full Text PDF

The lacI mutant frequency and mutation spectrum were determined in the bone marrow and testes of B6C3F1 lacI transgenic mice exposed by inhalation to ethylene oxide (EO). Groups of male transgenic lacI B6C3F1 mice were exposed to 0, 25, 50, 100 or 200 p.p.

View Article and Find Full Text PDF

Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones.

View Article and Find Full Text PDF

Mechanistic approaches for mixture risk assessments-present capabilities with simple mixtures and future directions.

Environ Toxicol Pharmacol

March 2004

CIIT, Centers for Health Research, Six Davis Dr., PO Box 12137, Research Triangle Park, NC 27709-2137, USA.

Mechanistic studies with simple mixtures have provided insights into the nature of interactions among chemicals that lead to non-additive effects and have elucidated the exposure conditions under which interactions are likely to occur. This paper discusses studies on four mixtures: (1) 1,1-dichloroethylene and trichloroethylene, (2) carbon tetrachloride and Kepone, (3) hexane and methyl-n-butylketone, and (4) coplanar and non-coplanar polychlorinated biphenyls. These mechanistic studies show that interactions should be described at the level of target tissue dose and are best categorized as either pharmacokinetic (PK) or pharmacodynamic (PD) interactions.

View Article and Find Full Text PDF

Chronic human exposure to benzene has been linked to several hematopoietic disorders, including leukemia and lymphomas. Certain benzene metabolites, including benzoquinone (BQ), are genotoxic and mutagenic. Bone marrow stem cells are targets for benzene-induced cytotoxicity and DNA damage that could result in changes to the genome of these progenitor cells, thereby leading to hematopoietic disorders and cancers.

View Article and Find Full Text PDF

In utero exposure of male rats to the antiandrogen di(n-butyl) phthalate (DBP) leads to decreased anogenital distance (AGD) on postnatal day (PND) 1, increased areolae retention on PND 13, malformations in the male reproductive tract, and histologic testicular lesions including marked seminiferous epithelial degeneration and a low incidence of Leydig cell (LC) adenomas on PND 90. One objective of this study was to determine the incidence and persistence of decreased AGD, increased areolae retention, and LC adenomas in adult rats following in utero DBP exposure. A second objective was to determine whether AGD and areolae retention during the early postnatal period are associated with lesions in the male reproductive tract.

View Article and Find Full Text PDF

DNA-protein cross-links (DPX) serve as a dosimeter for inhaled formaldehyde and are associated with tumor induction in rat nasal passages after chronic exposure to 6 ppm and above. To determine the role of epithelium-specific morphometry in formaldehyde-induced patterns of injury, we developed a mathematical model that links airflow-driven formaldehyde uptake with DPX formation in regions of the rat nose with high and low tumor incidence. A three-dimensional, anatomically accurate computational fluid dynamics model of rat nasal airflow and inhaled gas uptake was integrated with a physiologically based mathematical model incorporating tissue thickness, formaldehyde diffusion, its removal by enzymatic and nonenzymatic processes, and DNA distribution in the nasal mucosa to predict DPX formation.

View Article and Find Full Text PDF

Tertiary amyl methyl ether (TAME) is a gasoline fuel additive used to reduce emissions. Understanding the metabolism and distribution of TAME is needed to assess potential human health issues. The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of TAME were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration.

View Article and Find Full Text PDF

Interest in understanding the biological behavior of aliphatic ethers has increased owing to their use as gasoline additives. The purpose of this study was to investigate the blood pharmacokinetics of the oxygenate tertiary amyl methyl ether (TAME), its major metabolite tertiary amyl alcohol (TAA) and acetone in rats and mice following inhalation exposure to TAME. Species differences in the area under the curve (AUC) for TAME were significant at each exposure concentration.

View Article and Find Full Text PDF

Tertiary amyl methyl ether (TAME) is a fuel additive used to reduce carbon monoxide in automobile emissions. Because of the potential for human exposure, this study was conducted to develop methods for the characterization and quantitation of metabolites in expired air and excreta of rats exposed to a mixture of [13C]- and [14C]TAME ([2,3,4-13C]- and [2-14C]2-methoxy-2-methylbutane). The distribution of TAME in rats was determined following inhalation exposure, and TAME-derived metabolites were characterized in expired air and urine.

View Article and Find Full Text PDF

This evaluation was part of a much more comprehensive testing program to characterize the mammalian toxicity potential of the gasoline oxygenator additive tertiary amyl methyl ether (TAME), and was initiated upon a regulatory agency mandate. A developmental toxicity hazard identification study was conducted by TAME vapor inhalation exposure in two pregnant rodent species. Timed-pregnant CD(Sprague-Dawley) rats and CD-1 mice, 25 animals per group, inhaled TAME vapors containing 0, 250, 1500 or 3500 ppm for 6 h a day on gestational days 6-16 (mice) or 6-19 (rats).

View Article and Find Full Text PDF

In utero exposure to di(n-butyl) phthalate (DBP) leads to a variety of male reproductive abnormalities similar to those caused by androgen receptor antagonists. DBP demonstrates no affinity for the androgen receptor, but rather leads to diminished testosterone production by the fetal testis. The purpose of this study was to determine the onset and reversibility of DBP effects on the fetal testis and to determine at a functional level the points in the cholesterol transport and steroidogenesis pathways affected by DBP.

View Article and Find Full Text PDF

Iron and manganese share structural, biochemical, and physiological similarities. The objective of this study was to determine whether iron, like manganese, is transported to the rat brain via the olfactory tract following inhalation exposure. Eight-week-old male CD rats were exposed to approximately 0.

View Article and Find Full Text PDF

The von Hippel-Lindau (VHL) tumor suppressor gene plays a prominent role in the development of renal cell carcinoma (RCC) in humans. VHL functions as a ubiquitin E3 ligase, controlling the stability of hypoxia inducible factor (HIF) and tumor angiogenesis. Alterations in this tumor suppressor gene are rarely observed in spontaneous or chemically induced RCC that arise in conventional strains of rodents and Vhl knockout mice (Vhl+/-) do not develop spontaneous RCC.

View Article and Find Full Text PDF

Dose-response curves for the first interaction of a chemical with a biochemical target molecule are usually monotonic; i.e., they increase or decrease over the entire dose range.

View Article and Find Full Text PDF

A multispecies, subchronic, inhalation study comparing pulmonary responses to ultrafine titanium dioxide (uf-TiO(2)) was performed. Female rats, mice, and hamsters were exposed to aerosol concentrations of 0.5, 2.

View Article and Find Full Text PDF