739 results match your criteria: "Center of Energy[Affiliation]"
Exploration (Beijing)
August 2024
Chemosphere
September 2024
Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. Electronic address:
The present study employed powdered activated coke (PAC) for the adsorptive removal of refractory COD from the bio-treated paper wastewater (BTPW). The adsorption reached equilibrium after 3 h, resulting in a decrease in the COD concentration from 98.9 mg L in BTPW to 42.
View Article and Find Full Text PDFInorg Chem
September 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Food Res Int
October 2024
Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India. Electronic address:
Rice bran is abundant in dietary fiber and is often referred to as the seventh nutrient, recognized for its numerous health benefits. The objective of the current study is to investigate the extraction of both soluble and insoluble dietary fiber from defatted rice bran (DRB) using an alkali-enzymatic treatment through response surface methodology. The independent variables like substrate percentage (5-30 %), enzyme concentration (1-50 µL/g), and treatment time (2-12 h) and dependent variables were the yield of soluble and insoluble DF.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
Angew Chem Int Ed Engl
January 2025
National Synchrotron Radiation Laboratory, Free Electron Laser for Innovation Center of Energy Chemistry (FELiChEM), CAS Center for Excellence in Nanoscience, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, 230029, Hefei, China.
Electrochemical formic acid oxidation reaction (FAOR) is a pivotal model for understanding organic fuel oxidation and advancing sustainable energy technologies. Here, we present mechanistic insights into a novel molecular-like iridium catalyst (Ir-N-C) for FAOR. Our studies reveal that isolated sites facilitate a preferential dehydrogenation pathway, circumventing catalyst poisoning and exhibiting high inherent activity.
View Article and Find Full Text PDFEcol Evol
August 2024
Earth and Planetary Sciences, Ocean Sciences Departament, Institute of Marine Sciences University of California Santa Cruz California United States.
In this study, we examined the relationship between sea surface temperature (SST) and phytoplankton abundance in coastal regions of the Brazilian South Atlantic: São Paulo, Paraná, and Santa Catarina, and the Protection Area of Southern right whales () in Santa Catarina (APA), a conservation zone established along 130 km of coastline. Using SST and chlorophyll- (Chl-) data from 2002 to 2023, we found significant differences in SST between the regions, with São Paulo having the highest SST, followed by Paraná and Santa Catarina. All locations showed a consistent increase in SST over the years, with North Santa Catarina, APA and São Paulo experiencing the lowest rate of increase.
View Article and Find Full Text PDFChemistry
October 2024
Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China.
Mild and inexpensive copper-catalyzed aromatization-driven ring-opening amination and oxygenation of spiro dihydroquinazolinones are presented, respectively. These protocols provide facile and atom-economical access to the aminated and the carbonyl-containing quinazolin-4(3H)-ones in good yields with good functional group compatibility, which are difficult to obtain by conventional methods. Remarkably, a telescoped procedure involving the condensation and the ring-opening/functionalization for simple cycloalkanone was found to be accessible.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
The advancement of metal-air batteries is critically contingent on the progression of efficient catalysts for the oxygen reduction reaction (ORR). The potential applications of a series of FeN-doped carbon nanotubes (Fe-NCNTs) of varying diameters as ORR catalysts were examined using density functional theory. We explored the stability and electronic properties of Fe-NCNTs by analyzing the energy and examining the density of states.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
Combining high-voltage nickel-rich cathodes with lithium metal anodes is among the most promising approaches for achieving high-energy-density lithium batteries. However, most current electrolytes fail to simultaneously satisfy the compatibility requirements for the lithium metal anode and the tolerance for the ultra-high voltage NCM811 cathode. Here, we have designed an ultra-oxidation-resistant electrolyte by meticulously adjusting the composition of fluorinated carbonates.
View Article and Find Full Text PDFJ Environ Sci (China)
February 2025
College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
A mixed oxidant of chlorine dioxide (ClO) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant.
View Article and Find Full Text PDFNat Commun
August 2024
Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Aluminum batteries have become the most attractive next-generation energy storage battery due to their advantages of high safety, high abundance, and low cost. However, the dendrite problem associated with inhomogeneous electrodeposition during cycling leads to low Coulombic efficiency and rapid short-circuit failure of the aluminum metal anode, which severely hampers the cycling stability of aluminum battery. Here we show an aluminum anode material that achieves high lattice matching between the substrate and the deposit, allowing the aluminum deposits to maintain preferred crystal plane growth on the substrate surface.
View Article and Find Full Text PDFJ Am Chem Soc
August 2024
School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China.
Iron-nitrogen-carbon (Fe-N-C) catalysts, although the most active platinum-free option for the cathodic oxygen reduction reaction (ORR), suffer from poor durability due to the Fe leaching and consequent Fenton effect, limiting their practical application in low-temperature fuel cells. This work demonstrates an integrated catalyst of a platinum-iron (PtFe) alloy planted in an Fe-N-C matrix (PtFe/Fe-N-C) to address this challenge. This novel catalyst exhibits both high-efficiency activity and stability, as evidenced by its impressive half-wave potential () of 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
The chemiluminescent light-emission pathway of phenoxy-1,2-dioxetane luminophores attracts growing interest within the scientific community. Dioxetane probes undergoing rapid flash-type chemiexcitation exhibit higher detection sensitivity than those with a slow glow-type chemiexcitation rate. We discovered that dioxetanes fused to non-strained six-member rings, with hetero atoms or inductive electron-withdrawing groups, present both accelerated chemiexcitation rates and elevated chemical stability compared to dioxetanes fused to four-member strained rings.
View Article and Find Full Text PDFChem Commun (Camb)
August 2024
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Herein, a binary inorganic molten salt electrolyte based on lithium bis(fluorosulfonyl)imide (LiFSI) and potassium bis(fluorosulfonyl)imide (KFSI) is applied to Li-CO batteries that can operate under 80 °C. Benefiting from the intrinsic nonvolatility, electrochemical stability, raised ionic conductivity, sufficient solubility and safety, the molten electrolyte endows the Li-CO battery with a large discharge capacity of 4612 mA h g and superior rate capability. The introduction of the Ru@Super P carbon cathode further optimizes the discharge capacity (9503 mA h g), overpotential (1.
View Article and Find Full Text PDFSmall
October 2024
Otto Schott Institute of Materials Research, University of Jena, 07743, Jena, Germany.
Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO (LCO) and LiFePO (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs).
View Article and Find Full Text PDFAdv Mater
September 2024
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Flexible perovskite solar cells (f-PSCs) have emerged as potential candidates for specific mechanical applications owing to their high foldability, efficiency, and portability. However, the power conversion efficiency (PCE) of f-PSC remains limited by the inferior contact between perovskite and flexible buried substrate. Here, an asymmetric π-extended self-assembled monolayer (SAM) (4-(9H-dibenzo[a,c]carbazol-9-yl)butyl)phosphonic acid (A-4PADCB) is reported as a buried substrate for efficient inverted f-PSCs.
View Article and Find Full Text PDFAdv Mater
September 2024
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo, Zhejiang, 315201, P. R. China.
The perovskite/silicon tandem solar cell represents one of the most promising avenues for exceeding the Shockley-Queisser limit for single-junction solar cells at a reasonable cost. Remarkably, its efficiency has rapidly increased from 13.7% in 2015 to 34.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, 361005, China.
Naphthalene diimides (NDI) are widely serving as the skeleton to construct electron transport materials (ETMs) for optoelectronic devices. However, most of the reported NDI-based ETMs suffer from poor interfaces with the perovskite which deteriorates the carrier extraction and device stability. Here, a representative design concept for editing the peripheral groups of NDI molecules to achieve multifunctional properties is introduced.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.
Zn-I flow batteries, with a standard voltage of 1.29 V based on the redox potential gap between the Zn-negolyte (-0.76 vs.
View Article and Find Full Text PDFChemphyschem
October 2024
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Near-infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials.
View Article and Find Full Text PDFHeliyon
June 2024
Research Center of Energy Economics, School of Business Administration, Henan Polytechnic University, 2001 Century Road, Shanyang District, Jiaozuo 454003, Henan Province, China.
Quantifying and interpreting the water-energy-food (WEF) nexus is critical to achieve the sustainable development of urban resources. The mismatch between urban water, energy and food allocations is a prominent problem that is particularly acute in the Yellow River Basin (YRB) of China. In this study, models for the WEF coupling degree and coupling efficiency were constructed.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Ideal wave-absorbing materials are required to possess the characteristics such as being "broad, lightweight, thin, and strong." Biomass-derived materials for absorbing electromagnetic waves (EMWs) are widely explored due to their low cost, lightweight, environmentally friendly, high specific surface area, and porous structure. In this study, wood was used as the raw material, and N-doped carbon nanotubes were grown in situ in porous carbon derived from wood, loaded with magnetic metal Co nanoparticles through chemical vapor deposition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an, 710049, P. R. China.
Gel polymer electrolytes (GPEs) hold great promise for the practical application of lithium metal batteries. However, conventional GPEs hardly resists lithium dendrites growth and maintains long-term cycling stability of the battery due to its poor mechanical performance. Inspired by the slide-ring structure of polyrotaxanes (PRs), herein we developed a dynamic slide-crosslinked gel polymer electrolyte (SCGPE) with extraordinary stretchability of 970.
View Article and Find Full Text PDF