5 results match your criteria: "Center of Cellular and Molecular Biology of Diseases (CBCMe)[Affiliation]"

Recently, a novel method for the growth inhibition of malaria parasites using microwaves was proposed. However, the apparatuses used to demonstrate this method are high-cost and immovable, hindering the progression in this field of research, which is still in its early stages. This paper presents the redesign, construction, and validation of an equivalent system, converting it into a portable and low-cost system, capable of replacing the existing one.

View Article and Find Full Text PDF

Microwaves can kill malaria parasites non-thermally.

Front Cell Infect Microbiol

February 2023

Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama.

Malaria, which infected more than 240 million people and killed around six hundred thousand only in 2021, has reclaimed territory after the SARS-CoV-2 pandemic. Together with parasite resistance and a not-yet-optimal vaccine, the need for new approaches has become critical. While earlier, limited, studies have suggested that malaria parasites are affected by electromagnetic energy, the outcomes of this affectation vary and there has not been a study that looks into the mechanism of action behind these responses.

View Article and Find Full Text PDF

Evaluation of the in vitro and in vivo antiplasmodial effect of water treated with Photonic Multiphase Modulators (PMM) designed with Advanced Physics System Engineering (APSE™) and BioPhoton-X™ technology.

J Photochem Photobiol B

October 2021

Biomedical Physics and Engineering Unit, Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Panama. Electronic address:

Background: In vitro and in vivo testing of new technology was performed to evaluate the antiplasmodial activity of Photonic Multiphase Modulators (PMM) in cultures and in mice previously infected with Plasmodium falciparum and Plasmodium berghei parasites.

Methods: Cultures of P. falciparum infected-erythrocytes were exposed overnight to two generations of different APSE™ and BioPhoton-X™ PMM (C#1, R#1, R#2, D8 and D9).

View Article and Find Full Text PDF

Background: In order to identify new ways to prevent transmission of vector-borne diseases such as malaria, efforts have been made to understand how insects are attracted to humans. Vector-host interaction studies have shown that several volatile compounds play an important role in attracting mosquitoes to human targets. A headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HSPME GC-MS) analysis of the volatile organic composition of extracellular vesicles (EVs) and supernatants of ultracentrifugation (SNUs) was carried out in Plasmodium falciparum-infected cultures with high and low parasitemias.

View Article and Find Full Text PDF

Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

PLoS One

July 2017

Center of Cellular and Molecular Biology of Diseases (CBCMe), Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama.

The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum.

View Article and Find Full Text PDF