1,967 results match your criteria: "Center for Water[Affiliation]"

Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.

View Article and Find Full Text PDF

Bioelectronic and photogenerated electron synergistic catalyzed removal of chlorhexidine: Degradation and mechanism.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087,  China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:

The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.

View Article and Find Full Text PDF

The water-lubricated bearing plays a crucial role in the ship propulsion system, significantly impacting vessel safety. However, under the harsh working conditions of low-speed and heavy-load, the lubrication state of water-lubricated bearings is usually poor, leading to serious friction and wear. To improve the tribological performance of composites and reduce friction, three short fibers (ultra-high-molecular-weight polyethylene fibers, basalt fibers, and bamboo fibers) with the same mass fraction (5%) were added into the melted thermoplastic polyurethane (TPU).

View Article and Find Full Text PDF

In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices.

View Article and Find Full Text PDF

Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history.

Water Res

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.

View Article and Find Full Text PDF

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with OH/O via Molecular Signatures.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.

View Article and Find Full Text PDF

Evaluating the influence of human activities on flood severity and its spatial heterogeneity across the Pearl River Delta.

Sci Total Environ

January 2025

Institute of Estuarine and Coastal Research, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China. Electronic address:

With climate change and intensified human activities, disasters such as heavy rainfall, flooding, typhoons, and storm surges are becoming more frequent, posing significant threats to lives, property, and economic development. We propose a method combining extreme value theory and probability distribution to examine the flood severity under the effect of strong human activities. By focusing on the Pearl River Delta (PRD), as one of the most populated areas of China, we quantified changes in the severity of extreme water level for different return levels between 1966 and 1990 and 1991-2016 (with strong human activities), associated with the spatial patterns over the PRD.

View Article and Find Full Text PDF

The prevalence of nanoplastics (NPs) and sulfonamide antibiotics (SAs) in the aquatic environment is potentially harmful to the environment, and these pollutants are often present in the environment in the form of composite ones, thereby introducing more complex effects and hazards to the environment. Therefore, it is crucial to investigate the toxic effects of the individual target pollutants and their mixtures. In this study, we used Scenedesmus obliquus as the test organisms, two types of NPs: polystyrene (PS) and amine-modified (NH-PS), four SAs: sulfapyridine (SPY), sulfamethazine (SMR), sulfamethoxypyridazine (SMP), and sulfamethoxazole (SMZ), and their eight binary mixtures were examined.

View Article and Find Full Text PDF

Intensifying extreme droughts are altering lentic ecosystems and disrupting services provisioning. Unfortunately, drought research often lacks a holistic and intersectoral consideration of drought impacts, which can limit relevance of the insights for adaptive management. This literature review evaluated the current state of lake and reservoir extreme drought research in relation to biodiversity and three ecosystem services.

View Article and Find Full Text PDF

International mass gathering events, such as the Olympic and Paralympic Games, face the risk of cross-border transmission of infectious diseases. We previously reported that wastewater-based epidemiology (WBE), which has attracted attention as a COVID-19 surveillance tool, was implemented in the Tokyo 2020 Olympic and Paralympic Village to gain a comprehensive understanding of COVID-19 incidence in the village. In the present study, we explored the quantitative association of wastewater viral load and clinically confirmed cases in various areas of the village.

View Article and Find Full Text PDF

Solar-Driven Nanofluidic Ion Regulation for Fractional Salt Crystallization and Reutilization.

ACS Nano

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

Identifying key factors that control the chemical evolution of groundwater along groundwater flow direction is essential in ensuring the safety of groundwater resources in upper watersheds and lower plains. In this study, the ion ratio, multivariate statistics, and inverse geochemical modeling were used to investigate and explore the chemical characteristics of groundwater and factors driving the formation of groundwater components in the plain area of Deyang City, China. The chemical type of groundwater in the area was dominated by the HCO-Ca type, and the variation in groundwater chemical composition was mainly affected by water-rock interaction and human interference.

View Article and Find Full Text PDF

Enhancing visible light degradation of gaseous formaldehyde with CuO/OVs-TiO photocatalyst loaded wallpaper: Preparation, efficacy and mechanism.

Chemosphere

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.

View Article and Find Full Text PDF

Using different configurations of -planted constructed wetland-microbial fuel cells to remove Cr (Ⅵ) and p-chlorophenol and generate electricity.

Environ Technol

January 2025

Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, People's Republic of China.

P-chlorophenol (4-CP) and hexavalent chromium (Cr (VI)) are predominant contaminants in industrial effluents, eliciting substantial environmental and human health concerns. As a strong oxidant, Cr (Ⅵ) has the potential to facilitate the removal of 4-CP. However, the specific removal effect remains unclear.

View Article and Find Full Text PDF

Characterizing the precursors of byproducts formed by chlorine and chlorine dioxide disinfection using unknown screening analysis with Orbitrap mass spectrometry.

Sci Total Environ

January 2025

Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:

Chlorine (Cl) and chlorine dioxide (ClO) are commonly used to disinfect water but unfavorable interactions with dissolved organic matter (DOM) result in the formation of disinfection byproducts (DBPs). This study investigated the formation of organic DBPs arising from Cl and ClO disinfections under different contact times in two surface waters in Thailand and Suwannee River natural organic matter with/without bromide using unknown screening analysis with Orbitrap mass spectrometry. Many CHOCl-DBPs and CHOBr-DBPs intermediates were rapidly formed during the initial period of contact (5-30 min).

View Article and Find Full Text PDF

The presence of microplastics (MPs) in aquatic ecosystem has become a pressing global concern. MPs pose a significant threat to aquatic ecosystems, with devastating consequences for both aquatic life and human health. Notably, freshwater ecosystems are particularly vulnerable to MPs pollution.

View Article and Find Full Text PDF

Technoeconomic evaluation of integrating hydrothermal liquefaction in wastewater treatment plants.

Bioresour Technol

December 2024

Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC - Center for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark. Electronic address:

Article Synopsis
  • The study analyzes the economic feasibility of producing biocrude through hydrothermal liquefaction (HTL) at decentralized plants linked to wastewater treatment facilities.
  • The base case is based on a Danish WWTP serving 150,000 population equivalents, with results showing operational expenses as the largest cost factor.
  • Biocrude production is estimated at 94 kg/h with a minimum selling price ranging from 0.9 to 1.8 €/kg, depending on the plant size, while factors such as biocrude yield and labor costs significantly impact pricing.
View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater.

Food Environ Virol

December 2024

Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.

Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.

View Article and Find Full Text PDF

Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water.

Water Res

December 2024

Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China. Electronic address:

As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication.

View Article and Find Full Text PDF

Nutritional value, HPLC-DAD analysis and biological activities of Ceratonia siliqua L. pulp based on in vitro and in silico studies.

Sci Rep

December 2024

Agri-food Technology and Quality Laboratory, Regional Centre of Agricultural Research of Tadla, National Institute of Agricultural research (INRA), Avenue Ennasr, BP 415 Rabat principal, Rabat, 10090, Morocco.

The phytochemical, nutritional, and biological features of wild carob pulp from Tanzight (TN), Ait-Waada (AW), and Tizi-ghnayn (TG) in Azilal were studied. The results of the study reveal that the carob pulp examined has a low-fat level. AW had the most total sugar (78.

View Article and Find Full Text PDF

Impact of adaptation time on lincomycin removal in riverbank filtration: A long-term sand column study.

J Hazard Mater

December 2024

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Riverbank filtration (RBF) is an effective pretreatment technology for drinking water, removing organic micropollutants (OMPs) mainly through biodegradation. Despite documented improvements in OMP removal with extended adaptation time, the mechanisms remain poorly understood. This study assessed the removal of 128 OMPs over 82 d in a simulated RBF system, identified those with improved removal, and analyzed their properties.

View Article and Find Full Text PDF

Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.

View Article and Find Full Text PDF

Background: Problematic mobile phone use has become a pressing concern among adolescents due to its widespread prevalence and associated health risks. Physical exercise has been suggested as a potential intervention, but the psychological mechanisms underlying its effects remain unclear. This study explores how physical exercise impacts problematic mobile phone use through expression suppression, emotional problems (depression and anxiety), and resilience, offering actionable insights for intervention strategies.

View Article and Find Full Text PDF

The Beijing-Tianjin-Hebei (Jing-Jin-Ji) Region is home to the most acute economic, resource, and environmental conflicts in the Bohai Sea region, and the rivers entering the sea carry abundant total nitrogen (TN) input into the Bohai Bay, which is the main land-based input causing eutrophication of the bay. The Haihe River Basin in the Jing-Jin-Ji Region was divided into 112 (2018-2019) and 187 (2020-2022) control units, and the spatial and temporal variations in TN concentration in the surface water of the Haihe River Basin in the Jing-Jin-Ji Region were systematically analyzed from 2018 to 2022 by combining the Euclidean distance analysis method and the K-means clustering analysis method. The results showed that the annual average concentration of TN in the region showed a trend of decreasing (2018-2020) and then increasing (2021-2022), in which the concentration of TN increased significantly from June 2021 to June 2022.

View Article and Find Full Text PDF