462 results match your criteria: "Center for Translational Research in Neurodegenerative Disease.[Affiliation]"
iScience
July 2020
Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA. Electronic address:
We present here PhotoGal4, a phytochrome B-based optogenetic switch for fine-tuned spatiotemporal control of gene expression in Drosophila explants. This switch integrates the light-dependent interaction between phytochrome B and PIF6 from plants with regulatory elements from the yeast Gal4/UAS system. We found that PhotoGal4 efficiently activates and deactivates gene expression upon red- or far-red-light irradiation, respectively.
View Article and Find Full Text PDFFront Neurol
June 2020
Doré Lab, Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, United States.
Vitamin D serum level has been positively associated with improved cardiovascular health, especially with reduction of stroke risk. This systemic review summarizes and synthesizes findings from studies relevant to the relationship between vitamin D and stroke risk, severity, and outcome; potential mechanisms explaining such a relationship; and outcomes from vitamin D supplementation. The literature shows that vitamin D deficiency is a significant risk factor for ischemic stroke, with sun exposure, sex, age, race, diabetes, and genetics playing a role as well.
View Article and Find Full Text PDFActa Neuropathol Commun
June 2020
Department of Neuroscience, College of Medicine, University of Florida, 1275 Center Drive, Gainesville, Florida, 32610, USA.
Tau protein abnormally aggregates in tauopathies, a diverse group of neurologic diseases that includes Alzheimer's disease (AD). In early stages of disease, tau becomes hyperphosphorylated and mislocalized, which can contribute to its aggregation and toxicity. We demonstrate that tau phosphorylation at Ser208 (pSer208) promotes microtubule dysfunction and tau aggregation in cultured cells.
View Article and Find Full Text PDFFront Neurosci
May 2020
Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States.
It is becoming increasingly accepted that there is an interplay between the peripheral immune response and neuroinflammation in the pathophysiology of Parkinson's disease (PD). Mutations in the () gene are associated with familial and sporadic cases of PD but are also found in immune-related disorders, such as inflammatory bowel disease (IBD) and leprosy. Furthermore, LRRK2 has been associated with bacterial infections such as and .
View Article and Find Full Text PDFAnn N Y Acad Sci
September 2020
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
For decades, Alzheimer's disease research has focused on amyloid as the primary pathogenic agent. This focus has driven the development of numerous amyloid-targeting therapies; however, with one possible exception, none of these therapies have been effective in preventing or delaying cognitive decline in patients, and there are no approved disease-modifying agents. It is becoming more apparent that alternative drug targets are needed to address this complex disease.
View Article and Find Full Text PDFCurr Biol
July 2020
Department of Anatomy and Cell Biology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA. Electronic address:
Front Immunol
March 2021
Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
Notch signaling provides an important cue in the mammalian developmental process. It is a key player in T cell development and function. Notch ligands such as Delta-like ligands (DLL) 1, 3, 4, and JAG1, 2 can impact Notch signaling positively or negatively, by -activation or -inhibition.
View Article and Find Full Text PDFAlzheimers Res Ther
May 2020
Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610, USA.
Background: γ-Secretase is a multiprotein protease that cleaves amyloid protein precursor (APP) and other type I transmembrane proteins. It has two catalytic subunits, presenilins 1 and 2 (PS1 and 2). In our previous report, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates and slightly different potencies of PS1 versus PS2 inhibition for select γ-secretase inhibitors (GSIs) on various substrates.
View Article and Find Full Text PDFJ Biol Chem
July 2020
Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA
α-Synuclein (αsyn) is an abundant brain neuronal protein that can misfold and polymerize to form toxic fibrils coalescing into pathologic inclusions in neurodegenerative diseases, including Parkinson's disease, Lewy body dementia, and multiple system atrophy. These fibrils may induce further αsyn misfolding and propagation of pathologic fibrils in a prion-like process. It is unclear why αsyn initially misfolds, but a growing body of literature suggests a critical role of partial proteolytic processing resulting in various truncations of the highly charged and flexible carboxyl-terminal region.
View Article and Find Full Text PDFNeurobiol Dis
July 2020
Department of Neuroscience & Center for Translational Research in Neurodegenerative Disease, BOX 100159, 1275 Center Drive, University of Florida, Gainesville, FL 32610, United States of America. Electronic address:
Frontotemporal dementias (FTDs) encompass several disorders commonly characterized by progressive frontotemporal lobar degeneration and dementia. Pathologically, TDP-43, FUS, dipeptide repeats, and tau constitute the protein aggregates in FTD, which in turn coincide with heterogeneity in clinical variants. The underlying molecular etiology explaining the formation of each type of protein aggregate remains unclear; however, dysregulated RNA metabolism rises as a common pathogenic factor.
View Article and Find Full Text PDFNeuron
July 2020
Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Wallace H. Coulter Graduate Program in Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA 30332, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA. Electronic address:
GGGGCC hexanucleotide repeat expansions (HREs) in C9orf72 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and lead to the production of aggregating dipeptide repeat proteins (DPRs) via repeat associated non-AUG (RAN) translation. Here, we show the similar intronic GGCCTG HREs that causes spinocerebellar ataxia type 36 (SCA36) is also translated into DPRs, including poly(GP) and poly(PR). We demonstrate that poly(GP) is more abundant in SCA36 compared to c9ALS/FTD patient tissue due to canonical AUG-mediated translation from intron-retained GGCCTG repeat RNAs.
View Article and Find Full Text PDFNeurosci Lett
July 2020
Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. Electronic address:
Pathologic intracellular inclusions formed from polymers of misfolded α-synuclein (αsyn) protein define a group of neurodegenerative diseases termed synucleinopathies which includes Parkinson's disease (PD). Prion-like recruitment of endogenous cellular αsyn has been demonstrated to occur in animal models of synucleinopathy, whereby misfolded αsyn can induce further pathologic αsyn inclusions to form through a prion-like mechanism. It has been suggested that misfolded αsyn may assume differing conformations which lead to varied clinical and pathological manifestations of disease; this phenomenon bears similarities to that of prion strains whereby the same misfolded protein can produce unique diseases.
View Article and Find Full Text PDFSci Rep
April 2020
Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany.
Microglia, the innate immune cells of the central nervous system (CNS) survey their surroundings with their cytoplasmic processes, phagocytose debris and rapidly respond to injury. These functions are affected by the presence of beta-Amyloid (Aβ) deposits, hallmark lesions of Alzheimer's disease (AD). We recently demonstrated that exchanging functionally altered endogenous microglia with peripheral myeloid cells did not change Aβ-burden in a mouse model mimicking aspects of AD at baseline, and only mildly reduced Aβ plaques upon stimulation.
View Article and Find Full Text PDFElife
April 2020
Department for Neuroscience, University of Florida College of Medicine, Gainesville, United States.
A gene associated with Parkinson's disease regulates mitochondrial homeostasis, thus affecting innate immunity.
View Article and Find Full Text PDFNat Med
May 2020
Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA.
Our understanding of Alzheimer's disease (AD) pathophysiology remains incomplete. Here we used quantitative mass spectrometry and coexpression network analysis to conduct the largest proteomic study thus far on AD. A protein network module linked to sugar metabolism emerged as one of the modules most significantly associated with AD pathology and cognitive impairment.
View Article and Find Full Text PDFActa Neuropathol Commun
April 2020
Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
A hallmark pathology of Alzheimer's disease (AD) is the formation of amyloid β (Aβ) deposits that exhibit diverse localization and morphologies, ranging from diffuse to cored-neuritic deposits in brain parenchyma, with cerebral vascular deposition in leptomeningeal and parenchymal compartments. Most AD brains exhibit the full spectrum of pathologic Aβ morphologies. In the course of studies to model AD amyloidosis, we have generated multiple transgenic mouse models that vary in the nature of the transgene constructs that are expressed; including the species origin of Aβ peptides, the levels and length of Aβ that is deposited, and whether mutant presenilin 1 (PS1) is co-expressed.
View Article and Find Full Text PDFCell Mol Neurobiol
October 2020
Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.
The transcription factor Nrf2 is a central regulator of anti-inflammatory and antioxidant mechanisms that contribute to the development and progression of various neurological disorders. Although the direct and indirect Nrf2 regulatory roles on inflammation have been reviewed in recent years, the in vivo evidence of Nrf2 function on lipopolysaccharide (LPS)-induced cognitive decline and characteristic alterations of reactive microglia and astrocytes remains incomplete. During the 3-5 days after LPS or saline injection, 5-6-month-old wildtype (WT) and Nrf2 C57BL/6 mice were subjected to the novel object recognition task.
View Article and Find Full Text PDFActa Neuropathol Commun
March 2020
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
The discovery of mutations associated with familial forms of Alzheimer's disease (AD), has brought imperative insights into basic mechanisms of disease pathogenesis and progression and has allowed researchers to create animal models that assist in the elucidation of the molecular pathways and development of therapeutic interventions. Position 717 in the amyloid precursor protein (APP) is a hotspot for mutations associated with autosomal dominant AD (ADAD) and the valine to isoleucine amino acid substitution (V717I) at this position was among the first ADAD mutations identified, spearheading the formulation of the amyloid cascade hypothesis of AD pathogenesis. While this mutation is well described in multiple kindreds and has served as the basis for the generation of widely used animal models of disease, neuropathologic data on patients carrying this mutation are scarce.
View Article and Find Full Text PDFNat Rev Neurol
April 2020
ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
The idea that infectious agents in the brain have a role in the pathogenesis of Alzheimer disease (AD) was proposed nearly 30 years ago. However, this theory failed to gain substantial traction and was largely disregarded by the AD research community for many years. Several recent discoveries have reignited interest in the infectious theory of AD, culminating in a debate on the topic at the Alzheimer's Association International Conference (AAIC) in July 2019.
View Article and Find Full Text PDFMol Neurodegener
March 2020
Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida, USA.
Background: Recombinant adeno-associated virus (rAAV) is widely used in the neuroscience field to manipulate gene expression in the nervous system. However, a limitation to the use of rAAV vectors is the time and expense needed to produce them. To overcome this limitation, we evaluated whether unpurified rAAV vectors secreted into the media following scalable PEI transfection of HEK293T cells can be used in lieu of purified rAAV.
View Article and Find Full Text PDFHuman neurodegenerative diseases can be characterized as disorders of protein aggregation. As a key player in cellular autophagy and the ubiquitin proteasome system, p62 may represent an effective immunohistochemical target, as well as mechanistic operator, across neurodegenerative proteinopathies. In this study, 2 novel mouse-derived monoclonal antibodies 5G3 and 2A5 raised against residues 360-380 of human p62/sequestosome-1 were characterized via immunohistochemical application upon human tissues derived from cases of C9orf72-expansion spectrum diseases, Alzheimer disease, progressive supranuclear palsy, Lewy body disease, and multiple system atrophy.
View Article and Find Full Text PDFMov Disord
May 2020
Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Background: Autosomal recessive mutations in the glucocerebrosidase gene, Beta-glucocerebrosidase 1 (GBA1), cause the lysosomal storage disorder Gaucher's disease. Heterozygous carriers of most GBA1 mutations have dramatically increased Parkinson's disease (PD) risk, but the mechanisms and cells affected remain unknown. Glucocerebrosidase expression is relatively enriched in astrocytes, yet the impact of its mutation in these cells has not yet been addressed.
View Article and Find Full Text PDFMol Neurodegener
January 2020
Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
One of the primary genetic risk factors for Alzheimer's disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism.
View Article and Find Full Text PDFPLoS One
April 2020
Center for Translational Research in Neurodegenerative Disease, SantaFe HealthCare Alzheimer's Disease Research Center, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) associated with familial amyotrophic lateral sclerosis cause the protein to aggregate via a prion-like process in which soluble molecules are recruited to aggregates by conformational templating. These misfolded SOD1 proteins can propagate aggregation-inducing conformations across cellular membranes. Prior studies demonstrated that mutation of a Trp (W) residue at position 32 to Ser (S) suppresses the propagation of misfolded conformations between cells, whereas other studies have shown that mutation of Trp 32 to Phe (F), or Cys 111 to Ser, can act in cis to attenuate aggregation of mutant SOD1.
View Article and Find Full Text PDFJ Alzheimers Dis
May 2021
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA.
Background: Neuroinflammation has been recognized as an important factor in the pathogenesis of Alzheimer's disease (AD). One of the most recognized pathways in mediating neuroinflammation is the prostaglandin E2-EP1 receptor pathway.
Objective: Here, we examined the efficacy of the selective EP1 antagonist ONO-8713 in limiting amyloid-β (Aβ), lesion volumes, and behavioral indexes in AD mouse models after ischemic stroke.