175 results match your criteria: "Center for Translational Neurophysiology[Affiliation]"

The observation that different effectors can execute the same movement suggests functional equivalences driven by limb independent representation of action in the central nervous system. A common invariant motor behavior is the speed and curvature coupling (the 1/3 power law), a low dimensional (abstract) descriptor of movement which is resilient to different sensorimotor contexts. Our purpose is to verify the consistency of such motor equivalence during a drawing task, by testing the effect of manual dominance and movement speed on motor performance.

View Article and Find Full Text PDF

The control and manipulation of superparamagnetic nanoparticles (SP-MNP) is a significant challenge and has become increasingly important in various fields, especially in biomedical research. Yet, most of applications rely on relatively large nanoparticles, 50 nm or higher, mainly due to the fact that the magnetic control of smaller MNPs is often hampered by the thermally induced Brownian motion. Here we present a magnetic device able to manipulate remotely in microfluidic environment SP-MNPs smaller than 10 nm.

View Article and Find Full Text PDF

This preliminary study introduces a novel action observation therapy (AOT) protocol associated with electroencephalographic (EEG) monitoring to be used in the future as a rehabilitation strategy for the upper limb in patients with subacute stroke. To provide initial evidence on the usefulness of this method, we compared the outcome of 11 patients who received daily AOT for three weeks with that of patients who undertook two other approaches recently investigated by our group, namely intensive conventional therapy (ICT), and robot-assisted therapy combined with functional electrical stimulation (RAT-FES). The three rehabilitative interventions showed similar arm motor recovery as indexed by Fugl-Meyer's assessment of the upper extremity (FMA_UE) and box and block test (BBT).

View Article and Find Full Text PDF

Eugenol, cinnamaldehyde and D-limonene, the main components of natural essential oils, are endowed with antioxidant and anti-inflammatory properties which allow them to induce beneficial effects on intestinal, cardiac and neuronal levels. In order to characterize their pharmacokinetic profiles and aptitude to permeate in the central nervous system after intravenous and oral administration to rats, new analytical procedures, easily achievable with HPLC-UV techniques, were developed. The terminal half-lives of these compounds range from 12.

View Article and Find Full Text PDF

Unravelling neurotransmitters impairment in primary progressive aphasias.

Hum Brain Mapp

April 2023

Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.

Primary progressive aphasias (PPAs) are a group of neurodegenerative diseases mainly characterized by language impairment, and with variably presence of dysexecutive syndrome, behavioural disturbances and parkinsonism. Detailed knowledge of neurotransmitters impairment and its association with clinical features hold the potential to develop new tailored therapeutic approaches. In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of magnetic resonance imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission.

View Article and Find Full Text PDF

Placental DNA methylation profile as predicting marker for autism spectrum disorder (ASD).

Mol Med

January 2023

Medical Genetics Laboratory, Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 74, 44121, Ferrara, Italy.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that impairs normal brain development and socio-cognitive abilities. The pathogenesis of this condition points out the involvement of genetic and environmental factors during in-utero life. Placenta, as an interface tissue between mother and fetus, provides developing fetus requirements and exposes it to maternal environment as well.

View Article and Find Full Text PDF

The observation of other's actions represents an essential element for the acquisition of motor skills. While action observation is known to induce changes in the excitability of the motor cortices, whether such modulations may explain the amount of motor improvement driven by action observation training (AOT) remains to be addressed. Using transcranial magnetic stimulation (TMS), we first assessed in 41 volunteers the effect of action observation on corticospinal excitability, intracortical inhibition, and transcallosal inhibition.

View Article and Find Full Text PDF

Introduction: Recent studies showed that VR is a valid tool to change implicit attitudes toward outgroup members. Here, we extended this work by investigating conditions under which virtual reality (VR) is effective in changing implicit racial attitudes.

Methods: To this end, participants were embodied in a Black or White avatar and we manipulated the perspective through which they could see their virtual body.

View Article and Find Full Text PDF

Motor invariants in action execution and perception.

Phys Life Rev

March 2023

Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy. Electronic address:

The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive models of others' actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which can be used by observers to reduce their uncertainty during social exchanges.

View Article and Find Full Text PDF

cell models merging circadian rhythms and brain waves for personalized neuromedicine.

iScience

December 2022

Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Fossato di Mortara, 17, 44121 Ferrara, Italy.

New evidence is emerging about the dynamics of interaction between circadian rhythms and brain waves, whose coordination occurs through the entrainment process. The so-called "oscillopathies" or dysfunctions in synchronization of neuronal oscillation in key brain networks lead to the onset of neurodegenerative diseases. A typical example of alteration is insomnia, a risk factor for the oscillopathies, increasingly widespread worldwide.

View Article and Find Full Text PDF

Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC).

View Article and Find Full Text PDF

Speech listening entails neural encoding of invisible articulatory features.

Neuroimage

December 2022

Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Università di Ferrara, Ferrara, Italy. Electronic address:

Speech processing entails a complex interplay between bottom-up and top-down computations. The former is reflected in the neural entrainment to the quasi-rhythmic properties of speech acoustics while the latter is supposed to guide the selection of the most relevant input subspace. Top-down signals are believed to originate mainly from motor regions, yet similar activities have been shown to tune attentional cycles also for simpler, non-speech stimuli.

View Article and Find Full Text PDF

The functional connection between ventral premotor cortex (PMv) and primary motor cortex (M1) is critical for the organization of goal-directed actions. Repeated activation of this connection by means of cortico-cortical paired associative stimulation (cc-PAS), a transcranial magnetic stimulation (TMS) protocol, may induce Hebbian-like plasticity. However, the physiological modifications produced by Hebbian-like plasticity in the PMv-M1 network are poorly understood.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) is emerging as a non-invasive therapeutic strategy in the battle against Alzheimer's disease. Alzheimer's disease patients primarily show alterations of the default mode network for which the precuneus is a key node. Here, we hypothesized that targeting the precuneus with TMS represents a promising strategy to slow down cognitive and functional decline in Alzheimer's disease patients.

View Article and Find Full Text PDF

Social behaviors rely on the coordination of multiple effectors within one's own body as well as between the interacting bodies. However, little is known about how coupling at the interpersonal level impacts coordination among body parts at the intrapersonal level, especially in ecological, complex, situations. Here, we perturbed interpersonal sensorimotor communication in violin players of an orchestra and investigated how this impacted musicians' intrapersonal movements coordination.

View Article and Find Full Text PDF

Stopping in (e)motion: Reactive action inhibition when facing valence-independent emotional stimuli.

Front Behav Neurosci

September 2022

Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy.

Emotions are able to impact our ability to control our behaviors. However, it is not clear whether emotions play a detrimental or an advantageous effect on action control and whether the valence of the emotional stimuli differently affects such motor abilities. One way to measure reactive inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright a response to the presentation of a stop signal by means of the stop signal reaction times (SSRT).

View Article and Find Full Text PDF

Objective: Cognitive performance in Major Depressive Disorder (MDD) is frequently impaired and related to functional outcomes. Repetitive Transcranial Magnetic Stimulation (rTMS) may exert its effects on MDD acting both on depressive symptoms and neurocognition. Furthermore, cognitive status could predict the therapeutic response of depressive symptoms to rTMS.

View Article and Find Full Text PDF

Current clinical practice does not leverage electroencephalography (EEG) measurements in stroke patients, despite its potential to contribute to post-stroke recovery predictions. We review the literature on the effectiveness of various quantitative and qualitative EEG-based measures after stroke as a tool to predict upper limb motor outcome, in relation to stroke timeframe and applied experimental tasks. Moreover, we aim to provide guidance on the use of EEG in the assessment of upper limb motor recovery after stroke, suggesting a high potential for some metrics in the appropriate context.

View Article and Find Full Text PDF

Objective: Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology.

Methods: We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21).

View Article and Find Full Text PDF

nanomechanical mapping of PEDOT:PSS thin films in electrolyte solutions with bimodal AFM.

Nanoscale

October 2022

Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.

Understanding the interplay between the nanomechanical properties of organic electronic materials and their electronic properties is central to developing sensors and transducers for applications ranging from immunosensing to e-skin. Controlling organic device operations in aqueous electrolyte solutions and their mechanical compliance with the host tissue or living systems, as for instance in active implants for the recording or stimulation of neural signals, is still largely unexplored. Here, we implemented bimodal AFM to map the nanomechanical and structural properties of thin films made from poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), the most widely used conducting polymer blend, during operation as a microelectrode in an electrolyte solution.

View Article and Find Full Text PDF

We designed and implemented an immersive virtual reality (VR) environment for upper limb rehabilitation, which possesses several notable features. First, by exploiting modern computer graphics its can present a variety of scenarios that make the rehabilitation routines challenging yet enjoyable for patients, thus enhancing their adherence to the therapy. Second, immersion in a virtual 3D space allows the patients to execute tasks that are closely related to everyday gestures, thus enhancing the transfer of the acquired motor skills to real-life routines.

View Article and Find Full Text PDF

PEDOT: PSS promotes neurogenic commitment of neural crest-derived stem cells.

Front Physiol

August 2022

Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.

Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT).

View Article and Find Full Text PDF

The Reaching Phase of Feeding and Self-Care Actions Optimizes Action Observation Effects in Chronic Stroke Subjects.

Neurorehabil Neural Repair

September 2022

Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.

Background: The Action Observation Therapy (AOT) is a well-established post-stroke rehabilitation treatment based on the theoretical framework of the Mirror Neuron System (MNS) activation. However, AOT protocols are still heterogeneous in terms of video contents of observed actions.

Objective: The aim of this study was to analyze electroencephalographic (EEG) recordings in stroke patients during the observation of different videos of task-specific upper limb movements, and to define which category of actions can elicit a stronger cortical activation in the observer's brain.

View Article and Find Full Text PDF

The Influence of Vicarious Fear-Learning in "Infecting" Reactive Action Inhibition.

Front Behav Neurosci

July 2022

Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy.

Since the dawn of cognitive neuroscience, emotions have been recognized to impact on several executive processes, such as action inhibition. However, the complex interplay between emotional stimuli and action control is not yet fully understood. One way to measure inhibitory control is the stop-signal task (SST), which estimates the ability to cancel outright an action to the presentation of a stop signal by means of the stop-signal reaction times (SSRTs).

View Article and Find Full Text PDF