581 results match your criteria: "Center for Synthetic Microbiology SYNMIKRO & Faculty of Chemistry[Affiliation]"

Influenza virus-mediated suppression of bronchial Chitinase-3-like 1 secretion promotes secondary pneumococcal infection.

FASEB J

December 2020

Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.

Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae.

View Article and Find Full Text PDF

Members of the phage shock protein A (PspA) family, including the inner membrane-associated protein of 30 kDa (IM30), are suggested to stabilize stressed cellular membranes. Furthermore, IM30 is essential in thylakoid membrane-containing chloroplasts and cyanobacteria, where it is involved in membrane biogenesis and/or remodeling. While it is well known that PspA and IM30 bind to membranes, the mechanism of membrane stabilization is still enigmatic.

View Article and Find Full Text PDF

Chromosome segregation in B. subtilis is highly heterogeneous.

BMC Res Notes

October 2020

LOEWE Center for Synthetic Microbiology, SYNMIKRO, Philipps Universität Marburg, Marburg, Germany.

Objective: The bacterial cell cycle comprises initiation of replication and ensuing elongation, concomitant chromosome segregation (in some organisms with a delay termed cohesion), and finally cell division. By quantifying the number of origin and terminus regions in exponentially growing Bacillus subtilis cells, and after induction of DNA damage, we aimed at determining cell cycle parameters at different growth rates at a single cell level.

Results: B.

View Article and Find Full Text PDF

The physiological roles of the intracellular iron and redox regulatory systems are intimately linked. Iron is an essential trace element for most organisms, yet elevated cellular iron levels are a potent generator and amplifier of reactive oxygen species and redox stress. Proteins binding iron or iron-sulfur (Fe/S) clusters, are particularly sensitive to oxidative damage and require protection from the cellular oxidative stress protection systems.

View Article and Find Full Text PDF

(p)ppGpp: Magic Modulators of Bacterial Physiology and Metabolism.

Front Microbiol

September 2020

Department of Chemistry, Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.

When bacteria experience growth-limiting environmental conditions, the synthesis of the hyperphosphorylated guanosine derivatives (p)ppGpp is induced by enzymes of the RelA/SpoT homology (RSH)-type protein family. High levels of (p)ppGpp induce a process called "stringent response", a major cellular reprogramming during which ribosomal RNA (rRNA) and transfer RNA (tRNA) synthesis is downregulated, stress-related genes upregulated, messenger RNA (mRNA) stability and translation altered, and allocation of scarce resources optimized. The (p)ppGpp-mediated stringent response is thus often regarded as an all-or-nothing paradigm induced by stress.

View Article and Find Full Text PDF

Mechanistic concepts of iron-sulfur protein biogenesis in Biology.

Biochim Biophys Acta Mol Cell Res

January 2021

Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany. Electronic address:

Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro.

View Article and Find Full Text PDF

Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger which has been associated with a motile to sessile lifestyle switch in many bacteria. Here, we review recent insights into c-di-GMP regulated processes related to environmental adaptations in alphaproteobacterial rhizobia, which are diazotrophic bacteria capable of fixing nitrogen in symbiosis with their leguminous host plants. The review centers on Sinorhizobium meliloti, which in the recent years was intensively studied for its c-di-GMP regulatory network.

View Article and Find Full Text PDF

Biofilms are a ubiquitous mode of microbial life and display an increased tolerance to different stresses. Inside biofilms, cells may experience both externally applied stresses and internal stresses that emerge as a result of growth in spatially structured communities. In this review, we discuss the spatial scales of different stresses in the context of biofilms, and if cells in biofilms respond to these stresses as a collection of individual cells, or if there are multicellular properties associated with the response.

View Article and Find Full Text PDF

While many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication.

View Article and Find Full Text PDF

The actin cytoskeleton operates in a multitude of cellular processes including cell shape and migration, mechanoregulation, and membrane or organelle dynamics. However, its filamentous properties and functions inside the mammalian cell nucleus are less well explored. We previously described transient actin assembly at mitotic exit that promotes nuclear expansion during chromatin decondensation.

View Article and Find Full Text PDF

Structural Basis for Regulation of the Opposing (p)ppGpp Synthetase and Hydrolase within the Stringent Response Orchestrator Rel.

Cell Rep

September 2020

Center for Synthetic Microbiology & Department of Chemistry, Hans-Meerwein-Strasse, C07, Philipps-University Marburg, 35043 Marburg, Germany. Electronic address:

The stringent response enables metabolic adaptation of bacteria under stress conditions and is governed by RelA/SpoT Homolog (RSH)-type enzymes. Long RSH-type enzymes encompass an N-terminal domain (NTD) harboring the second messenger nucleotide (p)ppGpp hydrolase and synthetase activity and a stress-perceiving and regulatory C-terminal domain (CTD). CTD-mediated binding of Rel to stalled ribosomes boosts (p)ppGpp synthesis.

View Article and Find Full Text PDF

Masters of change.

Biol Chem

November 2020

Faculty of Biology, Laboratory for Microbiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.

View Article and Find Full Text PDF

Physiology of guanosine-based second messenger signaling in Bacillus subtilis.

Biol Chem

November 2020

Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany.

The guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets.

View Article and Find Full Text PDF

adjusts to high osmolarity surroundings through the amassing of compatible solutes. It synthesizes the compatible solute glycine betaine from prior imported choline and scavenges many pre-formed osmostress protectants, including glycine betaine, from environmental sources. Choline is imported through the substrate-restricted ABC transporter OpuB and the closely related, but promiscuous, OpuC system, followed by its GbsAB-mediated oxidation to glycine betaine.

View Article and Find Full Text PDF

The promiscuous activities of enzymes provide fertile ground for the evolution of new metabolic pathways. Here, we systematically explore the ability of to harness underground metabolism to compensate for the deletion of an essential biosynthetic pathway. By deleting all threonine deaminases, we generated a strain in which isoleucine biosynthesis was interrupted at the level of 2-ketobutyrate.

View Article and Find Full Text PDF

In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed.

View Article and Find Full Text PDF

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic.

View Article and Find Full Text PDF

Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources.

View Article and Find Full Text PDF

Extracytoplasmic function σ factors (ECFs) belong to the most abundant signal transduction mechanisms in bacteria. Among the diverse regulators of ECF activity, class I anti-σ factors are the most important signal transducers in response to internal and external stress conditions. Despite the conserved secondary structure of the class I anti-σ factor domain (ASDI) that binds and inhibits the ECF under noninducing conditions, the binding interface between ECFs and ASDIs is surprisingly variable between the published cocrystal structures.

View Article and Find Full Text PDF

The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO). However, formate dehydrogenases (FDHs) are usually specific to NAD, such that NADPH regeneration with formate is challenging.

View Article and Find Full Text PDF

Cellular processes are inherently noisy, and the selection for accurate responses in presence of noise has likely shaped signalling networks. Here, we investigate the trade-off between accuracy of information transmission and its energetic cost for a mitogen-activated protein kinase (MAPK) signalling cascade. Our analysis of the pheromone response pathway of budding yeast suggests that dose-dependent induction of the negative transcriptional feedbacks in this network maximizes the information per unit energetic cost, rather than the information transmission capacity itself.

View Article and Find Full Text PDF

Cellular reproduction is one of the fundamental hallmarks of life. Therefore, the development of a minimal division machinery capable of proper genome condensation and organization, mid-cell positioning and segregation in space and time, and the final septation process constitute a fundamental challenge for synthetic biology. It is therefore important to be able to engineer such modules for the production of artificial minimal cells.

View Article and Find Full Text PDF

Cytoskeletal and Actin-Based Polymerization Motors and Their Role in Minimal Cell Design.

Adv Biosyst

June 2019

Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.

Life implies motion. In cells, protein-based active molecular machines drive cell locomotion and intracellular transport, control cell shape, segregate genetic material, and split a cell in two parts. Key players among molecular machines driving these various cell functions are the cytoskeleton and motor proteins that convert chemical bound energy into mechanical work.

View Article and Find Full Text PDF

Faithful segregation of replicated genomes to dividing daughter cells is a major hallmark of cellular life and needs to be part of the future design of the robustly proliferating minimal cell. So far, the complexity of eukaryotic chromosome segregation machineries has limited their applicability to synthetic systems. Prokaryotic plasmid segregation machineries offer promising alternative tools for bottom-up synthetic biology, with the first three-component DNA segregation system being reconstituted a decade ago.

View Article and Find Full Text PDF