56,234 results match your criteria: "Center for Regeneration Medicine & Stem Cell Research[Affiliation]"

Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling.

Life Med

June 2024

Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.

The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Maxim.

View Article and Find Full Text PDF

Global insights into aging: a multidisciplinary approach to understanding and addressing age-related challenges.

Life Med

June 2024

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Article Synopsis
  • Aging research is gaining global attention, with recent conferences highlighting its complexity and the need for collaborative efforts.
  • Experts stress a multidisciplinary approach that combines detailed molecular studies with broader holistic perspectives to better understand aging.
  • The focus is on developing mechanisms and biomarkers of aging to translate scientific advancements into real-world benefits, promoting healthy aging through international collaboration.
View Article and Find Full Text PDF

How to accurately diagnose and treat bacterial infections in vivo remains a huge challenge. Therefore, we have developed a targeted delivery nanosystem by coextruding the pretreated macrophage membrane of with carbon dots (M@CD). The M@CD nanosystem demonstrates potent antibacterial effects both in vivo and in vitro through the generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Aim: Pilonidal sinus disease (PSD) is a common condition particularly affecting young men. Females affected by the condition account for about 20% of patients and are rarely mentioned, much less studied specifically. In this study we evaluate the surgical outcomes in a female population following Bascom's cleft lift (BCL) surgery in primary extensive disease, non-healing wounds after previous surgery and recurrent disease in a large Danish cohort from a high-volume centre.

View Article and Find Full Text PDF

Background: Tissue engineering for bone regeneration aims to heal severe bone injuries. This study aimed to prepare and assess the early osteogenic differentiation effects of a gelatin/calcium phosphate- Punica granatum nanocomposite scaffold on stem cells from human exfoliated deciduous (SHED) and human dental pulp stem cells (HDPSCs).

Methods: The electrospinning method was used to prepare a gelatin/calcium phosphate nanocomposite scaffold containing pomegranate (Punica granatum) extract.

View Article and Find Full Text PDF

Background: Non-typhoidal Salmonella (NTS) frequently cause bloodstream infection in children under-five in sub-Saharan Africa, particularly in malaria-endemic areas. Due to increasing drug resistance, NTS are often not covered by standard-of-care empirical antibiotics for severe febrile illness. We developed a clinical prediction model to orient the choice of empirical antibiotics (standard-of-care versus alternative antibiotics) for children admitted to hospital in settings with high proportions of drug-resistant NTS.

View Article and Find Full Text PDF

Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.

Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.

View Article and Find Full Text PDF

Advances in lacrimal gland organoid development: Techniques and therapeutic applications.

Biomed Pharmacother

January 2025

Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea. Electronic address:

The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms.

J Orthop Translat

January 2025

Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.

The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites.

View Article and Find Full Text PDF

Background And Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is reversible at early stages, making early identification of high-risk individuals clinically valuable. Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid accumulation than those without these variants. This study aimed to develop an iPSC-based MASLD risk predictor using functional lipid accumulation assessments.

View Article and Find Full Text PDF

Although emerging data have revealed the critical role of memory CD8 T cells in preventing and controlling SARS-CoV-2 infection, virus-specific CD8 T-cell responses against SARS-CoV-2 and its memory and innate-like subsets in unvaccinated COVID-19 patients with various disease manifestations in an HLA-restricted fashion remain to be understood. Here, we show the strong association of protective cellular immunity with mild COVID-19 and unique cell types against SARS-CoV-2 virus in an HLA-A2 restricted manner. ELISpot assays reveal that SARS-CoV-2-specific CD8 T-cell responses in mild COVID-19 patients are significantly higher than in severe patients, whereas neutralizing antibody responses against SARS-CoV-2 virus significantly correlate with disease severity.

View Article and Find Full Text PDF

Predicting risk of maternal critical care admission in Scotland: Development of a risk prediction model.

J Intensive Care Soc

January 2025

Department of Anaesthesia, Critical Care, and Pain Medicine, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, UK.

Background: Identifying women at highest or lowest risk of perinatal intensive care unit (ICU) admission may enable clinicians to risk stratify women antenatally so that enhanced care or elective admission to ICU may be considered or excluded in birthing plans. We aimed to develop a statistical model to predict the risk of maternal ICU admission.

Methods: We studied 762,918 pregnancies between 2005 and 2018.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.

Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) is a common disease that is difficult to nerve regeneration with current therapies. Fortunately, Zou demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells (BMSCs) in promoting nerve regeneration, revealing broad prospects for BMSCs transplantation in alleviating PNI. We confirmed the fact that BMSCs significantly alleviate PNI, but there are shortcomings such as low cell survival rate and immune rejection, which limit the wide application of BMSCs.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Background: Entrapment neuropathies, marked by nerve compression at various anatomical sites, can be effectively managed using conservative approaches like injections. Dextrose 5 % water injection has emerged as a potential therapy by reducing inflammation and promoting tissue regeneration. We aimed to evaluate dextrose injection's efficacy in treating entrapment neuropathies in upper extremities.

View Article and Find Full Text PDF

Introduction: Hand microsurgery is an important advancement of the speciality that has improved outcomes in hand trauma and hand surgical conditions. This bibliometric analysis aims to identify the 75 most cited hand microsurgery articles and explore their relevance to contemporary practice.

Methods: The Web of Science core collection database was used to screen and identify the top 75 most-cited articles relevant to hand microsurgery.

View Article and Find Full Text PDF

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

Numerous regulators of cardiomyocyte (CM) proliferation have been identified, yet how they coordinate during cardiac development or regeneration is poorly understood. Here, we developed a computational model of the CM proliferation regulatory network to obtain key regulators and systems-level understanding. The model defines five modules (DNA replication, mitosis, cytokinesis, growth factor, Hippo pathway) and integrates them into a network of 72 nodes and 88 reactions that correctly predicts 73 of 78 (93.

View Article and Find Full Text PDF

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate whether combining the analysis of different magnetic resonance imaging (MRI) signs enhances the diagnostic accuracy of lateral meniscus posterior root tears (LMPRTs) in patients with anterior cruciate ligament (ACL) injuries. We hypothesised that analysing the cleft, ghost and truncated triangle signs and lateral meniscus extrusion (LME) measurement together would improve the preoperative MRI-based diagnosis of LMPRTs.

Methods: This retrospective study used prospectively collected registry data from two academic centres, including patients undergoing primary or revision ACL reconstruction (ACLR) and LMPRT repair.

View Article and Find Full Text PDF