29 results match your criteria: "Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT)[Affiliation]"

Tuning Electronic Relaxation of Nanorings Through Their Interlocking.

J Comput Chem

January 2025

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina.

Electronic and vibrational relaxation processes can be optimized and tuned by introducing alternative pathways that channel excess energy more efficiently. An ensemble of interacting molecular systems can help overcome the bottlenecks caused by large energy gaps between intermediate excited states involved in the relaxation process. By employing this strategy, catenanes composed of mechanically interlocked carbon nanostructures show great promise as new materials for achieving higher efficiencies in electronic devices.

View Article and Find Full Text PDF

In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case.

View Article and Find Full Text PDF

Energy transfer processes among units of light-harvesting homo-oligomers impact the efficiency of these materials as components in organic optoelectronic devices such as solar cells. Perylene diimide (PDI), a prototypical dye, features exceptional light absorption and highly tunable optical and electronic properties. These properties can be modulated by varying the number of PDI units and linkers between them.

View Article and Find Full Text PDF

NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations.

J Chem Theory Comput

August 2023

Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.

View Article and Find Full Text PDF

Vibrational Funnels for Energy Transfer in Organic Chromophores.

J Phys Chem Lett

May 2023

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.

Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways.

View Article and Find Full Text PDF

Infinitene: Computational Insights from Nonadiabatic Excited State Dynamics.

J Phys Chem Lett

September 2022

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

Progress in organic synthesis opens exploration of a rich diversity of molecules with interesting new structural topologies. This is the case of a recently synthesized helically twisted figure-eight molecule coined infinitene. The molecule belongs to a numerous family of looped polyarenes, where the degree of π-conjugation is controlled by high strain energies and steric hindrances.

View Article and Find Full Text PDF

We present a method to link the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) package to the SANDER package supplied by AMBERTOOLS to provide excited-state adiabatic quantum mechanics/molecular mechanics (QM/MM) simulations. NEXMD is a computational package particularly developed to perform simulations of the photoexcitation and subsequent nonadiabatic electronic and vibrational energy relaxation in large multichromophoric conjugated molecules involving several coupled electronic excited states. The NEXMD-SANDER exchange has been optimized in order to achieve excited-state adiabatic dynamics simulations of large conjugated materials in a QM/MM environment, such as an explicit solvent.

View Article and Find Full Text PDF

Back-and-Forth Energy Transfer during Electronic Relaxation in a Chlorin-Perylene Dyad.

J Phys Chem Lett

October 2021

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

Donor-acceptor dyads represent a practical approach to tuning the photophysical properties of linear conjugated polymers in materials chemistry. Depending on the absorption wavelength, the acceptor and donor roles can be interchanged, and as such, the directionality of the energy transfer can be controlled. Herein, nonadiabatic excited state molecular dynamics simulations have been performed in an arylethylene-linked perylene-chlorin dyad.

View Article and Find Full Text PDF

Photoinduced Energy Transfer in Linear Guest-Host Chromophores: A Computational Study.

J Phys Chem A

June 2021

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

Polymer-based guest-host systems represent a promising class of materials for efficient light-emitting diodes. The energy transfer from the polymer host to the guest is the key process in light generation. Therefore, microscopic descriptions of the different mechanisms involved in the energy transfer can contribute to enlighten the basis of the highly efficient light harvesting observed in this kind of materials.

View Article and Find Full Text PDF

Photoinduced Dynamics with Constrained Vibrational Motion: FrozeNM Algorithm.

J Chem Theory Comput

December 2020

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, Bernal B1876BXD, Argentina.

Ab initio molecular dynamics (AIMD) simulation, analyzed in terms of vibrational normal modes, is a widely used technique that facilitates understanding of complex structural motions and coupling between electronic and nuclear degrees of freedom. Usually, only a subset of vibrations is directly involved in the process of interest. The impact of these vibrations can be evaluated by performing AIMD simulations by selectively freezing certain motions.

View Article and Find Full Text PDF

Machine learning approaches for structural and thermodynamic properties of a Lennard-Jones fluid.

J Chem Phys

September 2020

Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA.

Predicting the functional properties of many molecular systems relies on understanding how atomistic interactions give rise to macroscale observables. However, current attempts to develop predictive models for the structural and thermodynamic properties of condensed-phase systems often rely on extensive parameter fitting to empirically selected functional forms whose effectiveness is limited to a narrow range of physical conditions. In this article, we illustrate how these traditional fitting paradigms can be superseded using machine learning.

View Article and Find Full Text PDF

Electronic Energy Relaxation in a Photoexcited Fully Fused Edge-Sharing Carbon Nanobelt.

J Phys Chem Lett

June 2020

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

Carbon nanobelts are cylindrical molecules composed of fully fused edge-sharing arene rings. Because of their aesthetically appealing structures, they acquire unusual optoelectronic properties that are potentially suitable for a range of applications in nanoelectronics and photonics. Nevertheless, the very limited success of their synthesis has led to their photophysical properties remaining largely unknown.

View Article and Find Full Text PDF

Determination of Structural Correlation Functions.

J Phys Chem Lett

June 2020

Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States.

Determining the structural properties of condensed-phase systems is a fundamental problem in theoretical statistical mechanics. Here we present a machine learning method that is able to predict structural correlation functions with significantly improved accuracy in comparison with traditional approaches. The usefulness of this (from the machine) approach is illustrated by predicting the radial distribution functions of two paradigmatic condensed-phase systems, a Lennard-Jones fluid and a hard-sphere fluid, and then comparing those results to the results obtained using both integral equation methods and empirically motivated analytical functions.

View Article and Find Full Text PDF

Vibronic Quantum Beating between Electronic Excited States in a Heterodimer.

J Phys Chem B

May 2020

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

Energy transfer in multichromophoric molecules can be affected by coherences that are induced by the electronic and vibrational couplings between chromophore units. Coherent electron-vibrational dynamics can persist at the subpicosecond time scale even at room temperature. Furthermore, wave-like localized-delocalized motions of the electronic wave function can be modulated by vibrations that actively participate in the intermolecular energy transfer process.

View Article and Find Full Text PDF

Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks.

J Chem Phys

March 2019

Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.

The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations.

View Article and Find Full Text PDF

Charge delocalization characteristics of regioregular high mobility polymers.

Chem Sci

February 2017

Center for Polymers and Organic Solids , Department of Chemistry and Biochemistry , University of California Santa Barbara, Santa Barbara , California 93106 , USA.

Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy.

View Article and Find Full Text PDF

Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S → S internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics.

View Article and Find Full Text PDF

Dendrimers are arrays of coupled chromophores, where the energy of each unit depends on its structure and conformation. The light harvesting and energy funneling properties are strongly dependent on their highly branched conjugated architecture. Herein, the photoexcitation and subsequent ultrafast electronic energy relaxation and redistribution of a first generation dendrimer (1) are analyzed combining theoretical and experimental studies.

View Article and Find Full Text PDF

Carbon nanorings with inserted acenes: breaking symmetry in excited state dynamics.

Sci Rep

August 2016

Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina.

Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations.

View Article and Find Full Text PDF

We have computationally investigated the role of intramolecular vibrational modes in determining nonradiative relaxation pathways of photoexcited electronic states in isolated chlorophyll A (ChlA) molecules. To simulate the excited state relaxation from the initially excited Soret state to the lowest excited state Qy, the approach of nonadiabatic excited state molecular dynamics has been adopted. The intramolecular vibrational energy relaxation and redistribution that accompany the electronic internal conversion process is followed by analyzing the excited state trajectories in terms of the ground state equilibrium normal modes.

View Article and Find Full Text PDF

Nonradiative relaxation of high-energy excited states to the lowest excited state in chlorophylls marks the first step in the process of photosynthesis. We perform ultrafast transient absorption spectroscopy measurements, that reveal this internal conversion dynamics to be slightly slower in chlorophyll B than in chlorophyll A. Modeling this process with non-adiabatic excited state molecular dynamics simulations uncovers a critical role played by the different side groups in the two molecules in governing the intramolecular redistribution of excited state wavefunction, leading, in turn, to different time-scales.

View Article and Find Full Text PDF

Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies.

View Article and Find Full Text PDF

Nonadiabatic excited-state molecular dynamics: treatment of electronic decoherence.

J Chem Phys

June 2013

Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories is propagated and the equations of motion for the quantum coefficients are evolved coherently along each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained. At a region of strong coupling, a trajectory can branch into multiple wavepackets.

View Article and Find Full Text PDF

Position Isomerism on One and Two Photon Absorption in Multibranched Chromophores: A TDDFT Investigation.

J Chem Theory Comput

November 2010

Université Européenne de Bretagne, CNRS-Chimie et Photonique Moléculaires (CPM), Université de Rennes 1, 35042 Rennes, France, and Université Européenne de Bretagne, CNRS-Fonctions Optiques pour les Technologies de l'Information (FOTON), INSA de Rennes, CS70839, 35708 Rennes, France, and Center for NonLinear Studies (CNLS) and Center for Integrated NanoTechnologies (CINT), Los Alamos, New Mexico 87545, United States.

Recently, branching and click chemistry strategies have been combined to design a series of optically active chromophores built from triazole moieties. These triazole-based multipolar chromophores have been shown to be promising candidates for two-photon absorption (TPA) transparency optimization in perspective of optical limiting in the visible region. In this work, the nature of one- and two-photon absorption properties in a family of triazole-based chromophores has been investigated using hybrid time-dependent density functional theory (TD-DFT).

View Article and Find Full Text PDF