343 results match your criteria: "Center for Nanoscale Materials and ‡X-ray Science Division[Affiliation]"
Nat Commun
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.
Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.
View Article and Find Full Text PDFSci Adv
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li mobility. In this study, Li transport in structurally modified LiHoCl, via Br introduction and Li deficiency, is explored. The optimized Li Ho Cl Br achieves an ionic conductivity of 3.
View Article and Find Full Text PDFLangmuir
December 2024
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Self-assembled organic nanotubes (ONTs) have been actively examined for various applications such as chemical separations and catalysis owing to their well-defined tubular nanostructures with distinct chemical environments at the wall and internal/external surfaces. Adsorption of heavy metal ions onto ONTs plays an essential role in many of these applications but has rarely been assessed quantitatively. Herein, we investigated interactions between Cu and single-/quadruple-wall bolaamphiphile-based ONTs having inner carboxyl groups with different inner diameters, COOH-ONT and COOH-ONT.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.
Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-SnS) in polar solvents.
View Article and Find Full Text PDFSci Adv
November 2024
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Understanding surface collective dynamics in quantum materials is crucial for advancing quantum technologies. For example, surface phonon modes in quantum paraelectrics are thought to be essential in facilitating interfacial superconductivity. However, detecting these modes, especially below 1 terahertz, is challenging because of limited sampling volumes and the need for high spectroscopic resolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
In hafnia-based thin-film ferroelectric devices, chemical phenomena during growth and processing, such as oxygen vacancy formation and interfacial reactions, appear to strongly affect device performance. However, the correlation between the structure, chemistry, and electrical potentials at the nanoscale in these devices is not fully known, making it difficult to understand their influence on device properties. Here, we directly image the composition and electrostatic potential with nanometer resolution in the cross section of a nanocrystalline W/HfZrO (HZO)/W ferroelectric capacitor using multimodal electron microscopy.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA.
Symmetry control is essential for realizing unconventional properties, such as ferroelectricity, nonlinear optical responses, and complex topological order, thus it holds promise for the design of emerging quantum and photonic systems. Nevertheless, fast and reversible control of symmetry in materials remains a challenge, especially for nanoscale systems. Here, reversible symmetry changes are unveiled in colloidal lead chalcogenide quantum dots on picosecond timescales.
View Article and Find Full Text PDFNat Mater
December 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Nat Commun
October 2024
Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
Nat Mater
October 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Sci Adv
September 2024
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA.
J Chem Theory Comput
September 2024
Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H), (H), and -butadiene, and the magnetic coupling constant for a bimetallic compound [Cr(OH)(NH)].
View Article and Find Full Text PDFNat Commun
September 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Adv Mater
October 2024
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA.
ACS Omega
August 2024
Department of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States.
Activated carbon (AC) fiber is a carbonaceous material with a porous structure that has a tremendous scope of application in different fields. Conventionally, AC is derived from fossil fuel-based raw materials like polyacrylonitrile (PAN) and pitch. In this work, AC was synthesized from eco-friendly, renewable, and ubiquitous jute fiber.
View Article and Find Full Text PDFChem Rev
August 2024
Department of Electrical & Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA.
Nat Commun
July 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult.
View Article and Find Full Text PDFACS Nano
July 2024
Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, United States.
Monolayer protected metal clusters comprise a rich class of molecular systems and are promising candidate materials for a variety of applications. While a growing number of protected nanoclusters have been synthesized and characterized in crystalline forms, their dynamical behavior in solution, including prenucleation cluster formation, is not well understood due to limitations both in characterization and first-principles modeling techniques. Recent advancements in machine-learned interatomic potentials are rapidly enabling the study of complex interactions such as dynamical behavior and reactivity on the nanoscale.
View Article and Find Full Text PDFAdv Mater
August 2024
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA.
Science
June 2024
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
J Phys Chem B
July 2024
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
The existence of liquid carbon as an intermediate phase preceding the formation of novel carbon materials has been a point of contention for several decades. Experimental observation of such a liquid state requires nonthermal melting of solid carbon materials at various laser fluences and pulse properties. Reflectivity experiments performed in the mid-1980s reached opposing conclusions regarding the metallic or insulating properties of the purported liquid state.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Electrical control of charge density waves has been of immense interest, as the strong underlying electron-lattice interactions potentially open new, efficient pathways for manipulating their ordering and, consequently, their electronic properties. However, the transition mechanisms are often unclear as electric field, current, carrier injection, heat, and strain can all contribute and play varying roles across length scales and timescales. Here, we provide insight on how electrical stimulation melts the room temperature charge density wave order in 1T-TaS_{2} by visualizing the atomic and mesoscopic structural dynamics from quasi-static to nanosecond pulsed melting.
View Article and Find Full Text PDFNat Mater
August 2024
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Material functionality can be strongly determined by structure extending only over nanoscale distances. The pair distribution function presents an opportunity for structural studies beyond idealized crystal models and to investigate structure over varying length scales. Applying this method with ultrafast time resolution has the potential to similarly disrupt the study of structural dynamics and phase transitions.
View Article and Find Full Text PDF