257 results match your criteria: "Center for Nano Science and Technology @Polimi[Affiliation]"
Biomed Opt Express
September 2024
Politecnico di Milano, Dipartimento di Fisica, Milano, Italy.
We demonstrate the usability of bioresorbable phosphate glass fibers for time-domain diffuse optical spectroscopy (TD-DOS) in the short-wave infrared (SWIR) region of 950-1600 nm, with the use of an InGaAs detector. Bioresorbable fibers for diffuse optics present an exciting prospect due to their ability to be left implanted while retrieving optical properties from deeper regions (few cm) for monitoring treatments. Extending TD-DOS to the SWIR region could be useful to better identify biomarkers such as water, lipids and collagen, given their increase in absorption in this range.
View Article and Find Full Text PDFAdv Mater
September 2024
Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy.
While significant efforts have been devoted to optimize the thin-film stoichiometry and processing of perovskites for applications in photovoltaic and light-emitting diodes, there is a noticeable lack of emphasis on tailoring them for lasing applications. In this study, it is revealed that thin films engineered for efficient light-emitting diodes, with passivation of deep and shallow trap states and a tailored energetic landscape directing carriers toward low-energy emitting states, may not be optimal for light amplification systems. Instead, amplified spontaneous emission (ASE) is found to be sustained by shallow defects, driven by the positive correlation between the ASE threshold and the ratio of carrier injection rate in the emissive state to the recombination rate of excited carriers.
View Article and Find Full Text PDFJ Am Chem Soc
September 2024
Department of Chemistry and INSTM, University of Pavia, Via Taramelli 16, 27100 Pavia, Italy.
Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (/-ClMBA)GeI and (/-ClMBA)GeI.
View Article and Find Full Text PDFAdv Mater
September 2024
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn and Pb ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Politecnico di Milano, Milan, Italy.
Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).
View Article and Find Full Text PDFNPJ Aging
June 2024
Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age.
View Article and Find Full Text PDFJ Phys Chem Lett
June 2024
Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
Natural light harvesting is exceptionally efficient thanks to the local energy funnel created within light-harvesting complexes (LHCs). To understand the design principles underlying energy transport in LHCs, ultrafast spectroscopy is often complemented by mutational studies that introduce perturbations into the excitonic structure of the natural complexes. However, such studies may fall short of identifying all excitation energy transfer (EET) pathways and their changes upon mutation.
View Article and Find Full Text PDFNano Lett
June 2024
POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
Adv Mater
July 2024
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices.
View Article and Find Full Text PDFJ Phys Chem Lett
March 2024
Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
We combine site-directed mutagenesis with picosecond time-resolved fluorescence and femtosecond transient absorption (TA) spectroscopies to identify excitation energy transfer (EET) processes between chlorophylls (Chls) and xanthophylls (Xant) in the minor antenna complex CP29 assembled inside nanodiscs, which result in quenching. When compared to WT CP29, a longer lifetime was observed in the A mutant, missing Chl a612, which closely interacts with Xant Lutein in site L1. Conversely, a shorter lifetime was obtained in the A mutant, in which the interaction between Chl a603 and Chl a609 is strengthened, shifting absorption to lower energy and enhancing Chl-Xant EET.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2024
BeDimensional S.p.A., Via Lungotorrente Secca 30R, Genova 16163, Italy.
The capacitance of electrode materials used in electrochemical double-layer capacitors (EDLCs) is currently limited by several factors, including inaccessible isolated micropores in high-surface area carbons, the finite density of states resulting in a quantum capacitance in series to Helmholtz double-layer capacitance, and the presence of surface impurities, such as functional groups and adsorbed species. To unlock the full potential of EDLC active materials and corresponding electrodes, several post-production treatments are commonly proposed to improve their capacitance and, thus, the energy density of the corresponding devices. In this work, we report a systematic study of the effect of a prototypical treatment, namely H-assisted thermal treatment, on the chemical, structural, and thermal properties of activated carbon and corresponding electrodes.
View Article and Find Full Text PDFNanoscale Adv
February 2024
Dipartimento di Fisica, Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy
Semiconducting transition metal dichalcogenides are important optoelectronic materials thanks to their intense light-matter interaction and wide selection of fabrication techniques, with potential applications in light harvesting and sensing. Crucially, these applications depend on the lifetimes and recombination dynamics of photogenerated charge carriers, which have primarily been studied in monolayers obtained from labour-intensive mechanical exfoliation or costly chemical vapour deposition. On the other hand, liquid phase exfoliation presents a high throughput and cost-effective method to produce dispersions of mono- and few-layer nanosheets.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2024
Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy.
Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA SnI (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system.
View Article and Find Full Text PDFACS Energy Lett
December 2023
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Italy.
We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a of 638 mV.
View Article and Find Full Text PDFJ Am Chem Soc
December 2023
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
The compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ).
View Article and Find Full Text PDFPolym Chem
October 2023
Center for Materials Interfaces, Istituto Italiano di Tecnologia Viale Rinaldo Piaggio 34 56025 Pontedera Italy.
The possibility of generating regions with different electronic properties within the same organic semiconductor thin film could offer novel opportunities for designing and fabricating organic electronic devices and circuits. This study introduces a new approach based on a novel type of highly processable polymer precursor that can yield two different conjugated polymers characterized by complementary electronic properties, promoting electron or hole transport, from the same starting material. In particular, these multipotent precursors comprise functionalized dihydroanthracene units that can offer several functionalization opportunities to improve the solubility or insert specific functionalities.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2023
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States.
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)SnI (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)PbI, which we have previously reported in a separate publication [, 153, 164706].
View Article and Find Full Text PDFThe quest for eco-friendly materials with anticipated positive impact for sustainability is crucial to achieve the UN sustainable development goals. Classical strategies of composite materials can be applied on novel nanomaterials and green materials. Besides the actual technology and applications also processing and manufacturing methods should be further advanced to make entire technology concepts sustainable.
View Article and Find Full Text PDFAdv Mater
January 2024
Center for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, Milano, 20134, Italy.
Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase.
View Article and Find Full Text PDFACS Energy Lett
September 2023
Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Rubattino 81, 20134 Milano, Italy.
Halide alloying in tin-based perovskites allows for photostable bandgap tuning between 1.3 and 2.2 eV.
View Article and Find Full Text PDFFront Physiol
July 2023
Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy.
Cytosolic Ca signals are organized in complex spatial and temporal patterns that underlie their unique ability to regulate multiple cellular functions. Changes in intracellular Ca concentration ([Ca]) are finely tuned by the concerted interaction of membrane receptors and ion channels that introduce Ca into the cytosol, Ca-dependent sensors and effectors that translate the elevation in [Ca] into a biological output, and Ca-clearing mechanisms that return the [Ca] to pre-stimulation levels and prevent cytotoxic Ca overload. The assortment of the Ca handling machinery varies among different cell types to generate intracellular Ca signals that are selectively tailored to subserve specific functions.
View Article and Find Full Text PDFChem Sci
August 2023
Department of Physics, Politecnico di Milano 20133 Milan Italy
Photodynamic inhibition (PDI) of bacteria represents a powerful strategy for dealing with multidrug-resistant pathogens and infections, as it exhibits minimal development of antibiotic resistance. The PDI action stems from the generation of a triplet state in the photosensitizer (PS), which subsequently transfers energy or electrons to molecular oxygen, resulting in the formation of reactive oxygen species (ROS). These ROS are then able to damage cells, eventually causing bacterial eradication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT--PLA.
View Article and Find Full Text PDFACS Energy Lett
June 2023
Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Rubattino 81, 20134 Milano, Italy.
Bandgap tuning is a crucial characteristic of metal-halide perovskites, with benchmark lead-iodide compounds having a bandgap of 1.6 eV. To increase the bandgap up to 2.
View Article and Find Full Text PDFSci Adv
June 2023
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, UK.